Skip to main content

A Methodology for Analyzing Case Retrieval from a Clustered Case Memory

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4626))

Included in the following conference series:

Abstract

Case retrieval from a clustered case memory consists in finding out the clusters most similar to the new input case, and then retrieving the cases from them. Although the computational time is improved, the accuracy rate may be degraded if the clusters are not representative enough due to data geometry. This paper proposes a methodology for allowing the expert to analyze the case retrieval strategies from a clustered case memory according to the required computational time improvement and the maximum accuracy reduction accepted. The mechanisms used to assess the data geometry are the complexity measures. This methodology is successfully tested on a case memory organized by a Self-Organization Map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundations issues, methodological variations, and system approaches. AI Communications 7, 39–59 (1994)

    Google Scholar 

  2. Basu, M., Ho, T.K.: Data Complexity in Pattern Recognition. In: Advanced Information and Knowledge Processing, Springer, Heidelberg (2006)

    Google Scholar 

  3. Bernadó, E., Ho, T.K.: Domain of competence of XCS classifier system in complexity measurement space. IEEE Transaction Evolutionary Computation 9(1), 82–104 (2005)

    Article  Google Scholar 

  4. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  5. Brown, M.: A Memory Model for Case Retrieval by Activation Passing. PhD thesis, University of Manchester (1994)

    Google Scholar 

  6. Chang, P., Lai, C.: A hybrid system combining self-organizing maps with case-based reasoning in wholesaler’s new-release book forecasting. Expert Syst. Appl. 29(1), 183–192 (2005)

    Article  MathSciNet  Google Scholar 

  7. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  8. Fornells, A., Golobardes, E., Martorell, J.M., Garrell, J.M., Bernadó, E., Macià, N.: Measuring the applicability of self-organization maps in a case-based reasoning system. In: 3rd Iberian Conference on Pattern Recognition and Image Analysis. LNCS, vol. 4478, pp. 532–539. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Fornells, A., Golobardes, E., Vernet, D., Corral, G.: Unsupervised case memory organization: Analysing computational time and soft computing capabilities. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 241–255. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Fornells, A., Golobardes, E., Vilasís, X., Martí, J.: Integration of strategies based on relevance feedback into a tool for retrieval of mammographic images. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 116–124. Springer, Heidelberg (2006) (Selected to be published in the International Journal of Neural Systems)

    Chapter  Google Scholar 

  11. Ho, T.K., Basu, M.: Complexity measures of supervised classification problems. IEEE Transaction on Pattern Analysis and Machine Intelligence 24(3), 289–300 (2002)

    Article  Google Scholar 

  12. Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer Series in Information Sciences, vol. 8. Springer, Heidelberg (1984)

    MATH  Google Scholar 

  13. Lenz, M., Burkhard, H.D., Brückner, S.: Applying case retrieval nets to diagnostic tasks in technical domains. In: Smith, I., Faltings, B.V. (eds.) Advances in Case-Based Reasoning. LNCS, vol. 1168, pp. 219–233. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  14. Myllymaki, P., Tirri, H.: Massively parallel case-based reasoning with probabilistic similarity metrics (1993)

    Google Scholar 

  15. Nicholson, R., Bridge, D., Wilson, N.: Decision diagrams: Fast and flexible support for case retrieval and recommendation. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 136–150. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Pelleg, D., Moore, A.: X-means: Extending K-means with efficient estimation of the number of clusters. In: Proceedings of the 17th International Conference of Machine Learning, pp. 727–734. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  17. Plaza, E., McGinty, L.: Distributed case-based reasoning. The Knowledge engineering review 20(3), 261–265 (2006)

    Article  Google Scholar 

  18. Rissland, E.L., Skalak, D.B., Friedman, M.: Case retrieval through multiple indexing and heuristic search. In: International Joint Conferences on Artificial Intelligence, pp. 902–908 (1993)

    Google Scholar 

  19. Schaaf, J.W.: Fish and Sink - an anytime-algorithm to retrieve adequate cases. In: Aamodt, A., Veloso, M.M. (eds.) Case-Based Reasoning Research and Development. LNCS, vol. 1010, pp. 538–547. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  20. Vernet, D., Golobardes, E.: An unsupervised learning approach for case-based classifier systems. Expert Update. The Specialist Group on Artificial Intelligence 6(2), 37–42 (2003)

    Google Scholar 

  21. Wess, S., Althoff, K.D., Derwand, G.: Using k-d trees to improve the retrieval step in case-based reasoning. In: Wess, S., Richter, M., Althoff, K.-D. (eds.) Topics in Case-Based Reasoning. LNCS, vol. 837, pp. 167–181. Springer, Heidelberg (1994)

    Google Scholar 

  22. Yang, Q., Wu, J.: Enhancing the effectiveness of interactive cas-based reasoning with clustering and decision forests. Applied Intelligence 14(1) (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rosina O. Weber Michael M. Richter

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fornells, A., Golobardes, E., Martorell, J.M., Garrell, J.M., Macià, N., Bernadó, E. (2007). A Methodology for Analyzing Case Retrieval from a Clustered Case Memory. In: Weber, R.O., Richter, M.M. (eds) Case-Based Reasoning Research and Development. ICCBR 2007. Lecture Notes in Computer Science(), vol 4626. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74141-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74141-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74138-1

  • Online ISBN: 978-3-540-74141-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics