Skip to main content

An Ω(n 2/logn) Speed-Up of Heuristics for the Gene-Duplication Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4645))

Abstract

The gene-duplication problem is to infer a species supertree from gene trees that are confounded by complex histories of gene duplications. This problem is NP-hard and thus requires efficient and effective heuristics. Existing heuristics perform a stepwise search of the tree space, where each step is guided by an exact solution to an instance of a local search problem. We improve on the time complexity of the local search problem by a factor of n 2/logn, where n is the size of the resulting species supertree. Typically, several thousand instances of the local search problem are solved throughout a stepwise heuristic search. Hence, our improvement makes the gene-duplication problem much more tractable for large-scale phylogenetic analyses.

This research was supported in part by NSF grant no. 0334832.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guigó, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Molecular Phylogenetics and Evolution 6(2), 189–213 (1996)

    Article  Google Scholar 

  2. Ma, B., Li, M., Zhang, L.: On reconstructing species trees from gene trees in term of duplications and losses. In: RECOMB, pp. 182–191 (1998)

    Google Scholar 

  3. Page, R.D.M.: GeneTree: comparing gene and species phylogenies using reconciled trees. Bioinformatics 14(9), 819–820 (1998)

    Article  Google Scholar 

  4. Slowinski, J.B., Knight, A., Rooney, A.P.: Inferring species trees from gene trees: A phylogenetic analysis of the elapidae (serpentes) based on the amino acid sequences of venom proteins. Molecular Phylogenetics and Evolution 8, 349–362 (1997)

    Article  Google Scholar 

  5. Page, R.D.M.: Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. Molecular Phylogenetics and Evolution 14, 89–106 (2000)

    Article  Google Scholar 

  6. Cotton, J., Page, R.D.M.: Vertebrate phylogenomics: reconciled trees and gene duplications. In: Pacific Symposium on Biocomputing, pp. 536–547 (2002)

    Google Scholar 

  7. Cotton, J.A., Page, R.D.M.: Tangled tales from multiple markers: reconciling conflict between phylogenies to build molecular supertrees. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 107–125. Springer, Heidelberg (2004)

    Google Scholar 

  8. Sanderson, M.J., McMahon, M.M.: Inferring angiosperm phylogeny from EST data with widespread gene duplication. BMC Evolutionary Biology 7(suppl. 1), S3 (2007)

    Google Scholar 

  9. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28, 132–163 (1979)

    Article  Google Scholar 

  10. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43(1), 58–77 (1994)

    Article  Google Scholar 

  11. Mirkin, B., Muchnik, I., Smith, T.F.: A biology consistent model for comparing molecular phylogenies. Journal of Computational Biology 2(4), 493–507 (1995)

    Article  Google Scholar 

  12. Eulenstein, O.: Predictions of gene-duplications and their phylogenetic development. PhD thesis, University of Bonn, Germany, GMD Research Series No. 20/1998 (1998), ISSN: 1435-2699

    Google Scholar 

  13. Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. Journal of Computational Biology 4(2), 177–187 (1997)

    Google Scholar 

  14. Chen, K., Durand, D., Farach-Colton, M.: Notung: a program for dating gene duplications and optimizing gene family trees. Journal of Computational Biology 7, 429–447 (2000)

    Article  Google Scholar 

  15. Bonizzoni, P., Vedova, G.D., Dondi, R.: Reconciling gene trees to a species tree. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Górecki, P., Tiuryn, J.: On the structure of reconciliations. In: Lagergren, J. (ed.) Comparative Genomics. LNCS (LNBI), vol. 3388, Springer, Heidelberg (2005)

    Google Scholar 

  17. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Latin American Theoretical INformatics, pp. 88–94 (2000)

    Google Scholar 

  18. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fellows, M., Hallett, M., Korostensky, C., Stege, U.: Analogs & duals of the mast problem for sequences & trees. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 103–114. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  20. Stege, U.: Gene trees and species trees: The gene-duplication problem is fixed-parameter tractable. In: Proceedings of the 6th International Workshop on Algorithms and Data Structures (1999)

    Google Scholar 

  21. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In: RECOMB, pp. 138–146 (2000)

    Google Scholar 

  22. Swofford, D.L., Olsen, G.J.: Phylogeny reconstruction. In: Molecular Systematics, Sinauer Associates, pp. 411–501 (1996)

    Google Scholar 

  23. Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Annals of Combinatorics 5, 1–13 (2001)

    Article  MathSciNet  Google Scholar 

  24. Bordewich, M., Semple, C.: On the computational complexity of the rooted subtree prune and regraft distance. Annals of Combinatorics 8, 409–423 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chen, D., Eulenstein, O., Fernández-Baca, D., Burleigh, J.G.: Improved heuristics for minimum-flip supertree construction. Evolutionary Bioinformatics (2006)

    Google Scholar 

  26. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Wehe, A.: Heuristics for the gene-duplication problem: A θ(n) speed-up for the local search. In: RECOMB, pp. 238–252 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raffaele Giancarlo Sridhar Hannenhalli

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bansal, M.S., Eulenstein, O. (2007). An Ω(n 2/logn) Speed-Up of Heuristics for the Gene-Duplication Problem. In: Giancarlo, R., Hannenhalli, S. (eds) Algorithms in Bioinformatics. WABI 2007. Lecture Notes in Computer Science(), vol 4645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74126-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74126-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74125-1

  • Online ISBN: 978-3-540-74126-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics