Skip to main content

Synthetic Biology: Life, Jim, but Not As We Know It

  • Chapter
Design by Evolution

Part of the book series: Natural Computing Series ((NCS))

  • 1273 Accesses

Abstract

Frankenstein, Mary Shelley’s classic tale of horror, warns of the perils of hubris: of the terrible fate that awaits when Man plays God and attempts to create life. Molecular biologists are clearly not listening. Not content with merely inserting the occasional gene into the genome of an existing organism. they are developing a whole new field, Synthetic Biology, which aims to engineer from first principles organisms with desirable, controllable qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrianantoandro, A., Basu, S., Karig, D., Weiss, R.: Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology 2(2006,0028) (2006)

    Google Scholar 

  2. Atkinson, M., Savageau, M., Myers, J., Ninfa, A.: Development of genetic circuitry exhibiting toggle switch or oscillatory behaviour in Escherichia coli. Cell 113, 597–607 (2003)

    Article  Google Scholar 

  3. Atsumi, S., Little, J.: Regulatory circuit design and evolution using phage lambda. Genes and Development 18, 2086–2094 (2004)

    Article  Google Scholar 

  4. Banzhaf, W., Kuo, P.: Network motifs in natural and artificial transcriptional regulatory networks. Journal of Biological Physics and Chemistry 4(2), 85–92 (2004)

    Article  Google Scholar 

  5. Becskei, A., Serrano, L.: Engineering stability in gene networks by autoregulation. Nature 405, 590–593 (2000)

    Article  Google Scholar 

  6. Benner, S., Sismour, A.: Synthetic biology. Nature Reviews Genetics 6, 533–543 (2005)

    Article  Google Scholar 

  7. Bolouri, H., Davidson, E.: Modelling transcriptional regulatory networks. BioEssays 24, 1118–1129 (2002)

    Article  Google Scholar 

  8. Bray, D., Lay, S.: Computer simulated evolution of a network of cell-signalling molecules. Biophysical Journal 66(4), 972–977 (1994)

    Google Scholar 

  9. Cello, J., Paul, A., Wimmer, E.: Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297, 1016–1018 (2002)

    Article  Google Scholar 

  10. de Jong, H.: Modelling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 9(1), 67–103 (2002)

    Article  Google Scholar 

  11. Deckard, A., Sauro, H.: Preliminary studies on the in silico evolution of biochemical networks. ChemBioChem 5, 1423–1431 (2004)

    Article  Google Scholar 

  12. Dickman, S.: Production of recombinant insulin begins. Nature 329(6136), 193 (1987)

    Google Scholar 

  13. Dobrin, R., Beqand, Q., Barabasi, A., Oltvai, S.: Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics 5(10) (2004)

    Google Scholar 

  14. Endy, D.: Foundations for engineering biology. Nature 438, 449–453 (2005)

    Article  Google Scholar 

  15. Endy, D., Brent, R.: Modeling cellular behaviour. Nature 409, 391–395 (2001)

    Article  Google Scholar 

  16. Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290 (1959)

    MATH  Google Scholar 

  17. Ferrell Jr, J.: Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Current Opinion in Cell Biology 14, 140–148 (2002)

    Article  Google Scholar 

  18. Fogel, G., Corne, D.: Evolutionary Computation in Bioinformatics. Morgan Kaufmann, Boston (2003)

    Google Scholar 

  19. Fogel, L.: Intelligence Through Simulated Evolution: Four Decades of Evolutionary Programming. Wiley (1999)

    Google Scholar 

  20. Forster, A., Church, G.: Toward synthesis of a minimal cell. Molecular Systems Biology 2, 1–10 (2006)

    Article  Google Scholar 

  21. Francois, P., Hakim, V.: Design of genetic networks with specified functions by evolution in silico. Proceedings of the National Academy of Sciences of the USA 101(2), 580–585 (2004)

    Article  Google Scholar 

  22. Gachon, F., Nagoshi, E., Brown, S., Ripperger, J., Schibler, U.: The mammalian circadian timing system: from gene expression to physiology. Chromosoma 113(3), 103–112 (2004)

    Article  Google Scholar 

  23. Gilman, A., Larkin, A.: Genetic “code”: Representations and dynamical models of genetic components and networks. Annual Reviews of Genomics and Human Genetics 3, 341–369 (2002)

    Article  Google Scholar 

  24. Gilman, A., Ross, J.: Genetic-algorithm selection of a regulatory structure that directs flux in a simple metabolic model. Biophysical Journal 69(4), 1321–1333 (1995)

    Article  Google Scholar 

  25. Glass, J., Assad-Garcia, N., Alperovitch, N., Yooseph, S., Lewis, M., Maruf, M., Hutchinson, C., Smith, H., Venter, J.: Essential genes of a minimal bacterium. Proceedings of the National Academy of Sciences of the USA (2006)

    Google Scholar 

  26. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  27. Gross, J.: Graph Theory and its Applications. Chapman and Hall/CRC, Boca Raton (2006)

    MATH  Google Scholar 

  28. Guet, C., Elowitz, M., Hsing, W., Leibler, S.: Combinatorial synthesis of gene networks. Science 296(5572), 1466–1470 (2002)

    Article  Google Scholar 

  29. Guido, N., Wang, X., Adalsteinsson, D., McMillen, D., Hasty, J., Cantor, C., Elston, T., Collins, J.: A bottom-up approach to gene regulation. Nature 439, 856–860 (2006)

    Article  Google Scholar 

  30. Hallinan, J., Jackway, P.: Network motifs, feedback loops and the dynamics of genetic regulatory networks. In: Proceedings of the 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 90–96. IEEE Press (2005)

    Google Scholar 

  31. Hasty, J., McMillen, D., Collins, J.: Engineered gene circuits. Nature 420, 224–230 (2002)

    Article  Google Scholar 

  32. Heinemann, M., Panke, S.: Synthetic biology—putting engineering into biology. Bioinformatics 22(22), 2790–2799 (2006)

    Article  Google Scholar 

  33. Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology 3, 318–356 (1961)

    Article  Google Scholar 

  34. Jaenisch, R., Bird, A.: Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33, 245–254 (2003)

    Article  Google Scholar 

  35. Kaern, M., Blake, W., Collins, J.: The engineering of gene regulatory networks. Annual Review of Biomedical Engineering 5, 179–206 (2003)

    Article  Google Scholar 

  36. Lee, T., Rinaldi, N., Robert, F., Odom, D., Bar-Joseph, Z., Gerber, G.: Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–805 (2002)

    Article  Google Scholar 

  37. Levskaya, A., Chevalier, A., Tabor, J., Simpson, Z., Lavery, L., Levy, M., Davidson, E., Scouras, A., Ellington, A., Marcotte, E., Voigt, C.: Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441–442 (2005)

    Article  Google Scholar 

  38. Locke, J., Millar, A., Turner, M.: Modelling genetic networks with noisy and varied experimental data: the circadian clock in Arabidopsis thaliana. Journal of Theoretical Biology 234, 383–393 (2005)

    Article  MathSciNet  Google Scholar 

  39. Mangan, S., Alon, U.: Structure and function of the feed-forward loop network motif. Proceedings of the National Academy of Sciences of the USA (2003)

    Google Scholar 

  40. Mangan, S., Zaslaver, A., Alon, U.: The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. Journal of Molecular Biology 334(2), 197–204 (2003)

    Article  Google Scholar 

  41. Mattick, J.: Non-coding RNAs: the architects of molecular complexity. EMBO Reports 2(11), 986–991 (2001)

    Article  Google Scholar 

  42. McDaniel, R., Weiss, R.: Advances in synthetic biology: on the path from prototypes to applications. Current Opinion in Biology 16, 476–483 (2005)

    Article  Google Scholar 

  43. Michael, D., Oren, M.: The p53-Mdm2 module and the ubiquitin system. Seminars in Cancer Biology 13(1), 49–58 (2003)

    Article  Google Scholar 

  44. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  45. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA (1996)

    Google Scholar 

  46. Mushegian, A., Koonin, E.: A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proceedings of the National Academy of Sciences of the USA 93(19), 10,268–10,273 (1996)

    Article  Google Scholar 

  47. Orrell, D., Bolouri, H.: Control of internal and external noise in genetic regulatory networks. Journal of Theoretical Biology 230, 301–312 (2004)

    Article  MathSciNet  Google Scholar 

  48. Przulj, N., Wigle, D., Jurisica, I.: Functional topology in a network of protein interactions. Bioinformatics 20(3), 340–348 (2004)

    Article  Google Scholar 

  49. Ptashne, M.: A Genetic Switch: Phage Lambda and Higher Organisms. Cell Press and Blackwell Scientific Publications, Cambridge MA (1992)

    Google Scholar 

  50. Reil, T.: Models of gene regulation—a review. In: C. Maley, E. Boudreau (eds.) Artificial Life 7 Workshop Proceedings, pp. 107–113. MIT Press, Cambridge, MA (2000)

    Google Scholar 

  51. Ruoff, P., Christensen, M., Sharma, V.: PER/TIM-mediated amplification, gene dosage effects and temperature compensation in an interlocking-feedback loop model of the Drosophila circadian clock. Journal of Theoretical Biology 237, 41–57 (2005)

    Article  MathSciNet  Google Scholar 

  52. Schilling, C., Schuster, S., Palsson, B., Heinrich, R.: Metabolic pathway analysis: basic concepts and scientific applications. Biotechnology Progress 15(3), 296–303 (1999)

    Article  Google Scholar 

  53. Shen-Orr, S., Milo, R., Mangan, S., Alon, U.: Network motifs, in the transcriptional network of Escherichia coli. Nature Genetics 31, 64–68 (2002)

    Article  Google Scholar 

  54. Sprinzak, D., Elowitz, M.: Reconstruction of genetic circuits. Nature 438, 443–448 (2005)

    Article  Google Scholar 

  55. Sriram, K., Gopinathan, M.: A two variable delay model for the circadian rhythm of Neurospora crassa. Journal of Theoretical Biology 231, 23–38 (2004)

    Article  MathSciNet  Google Scholar 

  56. Szathmary, E.: Life: In search of the simplest cell. Nature 433, 469–470 (2006)

    Article  Google Scholar 

  57. Szybalski, W., Skalka, A.: Nobel prizes and restriction enzymes. Gene 4, 181–182 (1978)

    Article  Google Scholar 

  58. Thomas, R., Thieffry, D., Kaufman, M.: Dynamical behaviour of biological regulatory networks I—biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bulletin of Mathematical Biology 57(2), 247–276 (1995)

    MATH  Google Scholar 

  59. Tsuchiya, M., Ross, J.: Application of genetic algorithm to chemical kinetics: Systematic determination of reaction mechanism and rate coefficients for a complex reaction network. Journal of Physical Chemistry A 105(16), 4052–4058 (2001)

    Article  Google Scholar 

  60. Wuchty, S., Oltvai, Z., Barabasi, A.: Evolutionary conservation of motif constituents in the yeast protein interaction network. Nature Genetics 35(2), 176–179 (2003)

    Article  Google Scholar 

  61. Yokobayashi, Y., Weiss, R., Arnold, F.: Directed evolution of a genetic circuit. Proceedings of the National Academy of Sciences of the USA 99(26), 16,587–16,591 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hallinan, J. (2008). Synthetic Biology: Life, Jim, but Not As We Know It. In: Hingston, P.F., Barone, L.C., Michalewicz, Z. (eds) Design by Evolution. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74111-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74111-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74109-1

  • Online ISBN: 978-3-540-74111-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics