Skip to main content

Engineering Optimization Using Evolutionary Algorithms: A Case Study on Hydro-thermal Power Scheduling

  • Chapter
Design by Evolution

Part of the book series: Natural Computing Series ((NCS))

  • 1277 Accesses

Abstract

Many engineering design and developmental activities finally resort to an optimization task which must be solved to get an efficient solution. These optimization problems involve a variety of complexities:

  • • Objectives and constraints can be non-linear, non-differentiable and discrete.

  • • Objectives and constraints can be non-stationary.

  • • Objectives and constraints can be sensitive to parameter uncertainties near the optimum.

  • • The number of objectives and constraints can be large.

  • • Objectives and constraints can be expensive to compute.

  • • Decision or design variables can be of mixed type involving continuous, discrete, Boolean, and permutations.

Currently occupying the Finnish Distinguished Professor position at Helsinki School of Economics, Finland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basu, M.: A simulated annealing-based goal-attainment method for economic emission load dispatch of fixed head hydrothermal power systems. Electric Power and Energy Systems 27(2) 147–153 (2005)

    Article  Google Scholar 

  2. Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering 186(2–4), 311–338 (2000)

    Article  MATH  Google Scholar 

  3. Deb, K.: Multi-objective optimization using evolutionary algorithms.Chichester, UK: Wiley (2001).

    Google Scholar 

  4. Deb, K., Agrawal, R.: Simulated binary crossover for continuous search space. Complex Systems 9(2), 115–148 (1995)

    MATH  MathSciNet  Google Scholar 

  5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast, and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Deb, K., Chaudhuri, S.: I-MODE: an interactive multi-objective optimization and decision-making using evolutionary methods. In: Proceedings of Fourth International Conference on Evolutionary Multi-Criteria Optimization (EMO 2007), pp. 788–802 (2007)

    Google Scholar 

  7. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics 26(4), 30–45 (1996)

    Google Scholar 

  8. Deb, K., Gupta, H.: Searching for robust Pareto-optimal solutions in multiobjective optimization. In: Proceedings of the Third Evolutionary Multi-Criteria Optimization (EMO-05) Conference (Also Lecture Notes on Computer Science 3410), pp. 150–164 (2005)

    Google Scholar 

  9. Deb, K., Kumar, A.: Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2007), pp. 781–788. New York: The Association for Computing Machinery (ACM) (2007)

    Chapter  Google Scholar 

  10. Deb, K., Srinivasan, A.: Innovization: innovating design principles through optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006), pp. 1629–1636, New York: The Association for Computing Machinery (ACM) (2006)

    Chapter  Google Scholar 

  11. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    Google Scholar 

  12. Orero, S., Irving, M.: A genetic algorithm modeling framework and solution technique for short term optimal hydrothermal scheduling. IEEE Transactions on Power Systems 13(2) (1998)

    Google Scholar 

  13. Phelps, S., Koksalan, M.: An interactive evolutionary metaheuristic for multiobjective combinatorial optimization. Management Science 49(12), 1726–1738 (2003)

    Article  Google Scholar 

  14. Rashid, A., Nor, K.: An efficient method for optimal scheduling of fixed head hydro and thermal plants. IEEE Transactions Power Systems 6(2) (1991)

    Google Scholar 

  15. Shukla, P., Deb, K.: Comparing classical generating methods with an evolutionary multi-objective optimization method. In: Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization (EMO-2005), pp. 311–325 (2005). Lecture Notes on Computer Science 3410

    Google Scholar 

  16. Sinha, N., Chakraborty, R., Chattopadhyay, P.: Fast evolutionary programming techniques for short-term hydrothermal scheduling. Electric Power Systems Research 66 97–103 (2003)

    Article  Google Scholar 

  17. Thiele, L., Miettinen, K., Korhonen, P., Molina, J.: A preference-based interactive evolutionary algorithm for multiobjective optimization. Tech. Rep. Working Paper Number W-412, Helsinki School of Economics, Helsingin Kauppakorkeakoulu, Finland (2007)

    Google Scholar 

  18. Wong, K., Wong, Y.: Short-term hydrothermal scheduling I—simulated annealing approach. IEE Proc-C Gener., Trans., Distrib 141(5) (1994)

    Google Scholar 

  19. Wood, A., Woolenberg, B.: Power Generation, Operation and Control. John-Wiley & Sons (1986)

    Google Scholar 

  20. Yang, J., Chen, N.: Short-term hydrothermal co-ordination using multipass dynamic programming. IEEE Transactions Power Systems 4(3) (1989)

    Google Scholar 

  21. Zaghlool, M., Trutt, F.: Efficient methods for optimal scheduling of fixed head hydrothermal power systems. IEEE Transactions Power Systems 3(1) (1988)

    Google Scholar 

  22. Zeleny, M.: Multiple Criteria Decision Making. McGraw-Hill, New York (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deb, K. (2008). Engineering Optimization Using Evolutionary Algorithms: A Case Study on Hydro-thermal Power Scheduling. In: Hingston, P.F., Barone, L.C., Michalewicz, Z. (eds) Design by Evolution. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74111-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74111-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74109-1

  • Online ISBN: 978-3-540-74111-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics