Skip to main content

High Sliding Velocity Nanotribological Investigations of Materials for Nanotechnology Applications

  • Chapter
Applied Scanning Probe Methods IX

Part of the book series: Nano Science and Technolgy ((NANO))

  • 1416 Accesses

Abstract

The advent of microstructures/nanostructures and the subsequent miniaturization of moving components for various nanotechnology applications, such as microelectromechanical/ nanoelectromechanical systems, have given paramount importance to the tribology and mechanics on the nanoscale. Most of these microdevices/nanodevices and components operate at very high sliding velocities (of the order of tens of millimeters per second to a few meters per second). Research conducted on various materials, coatings and lubricants has revealed a strong velocity dependence of friction and adhesion on the nanoscale. However, these investigations have been rendered inadequate owing to the inherent limitations on the highest sliding velocities achievable with commercial atomic force microscopes (AFM) that allow the study of nanoscale phenomena. The development of a newAFM-based technique has enabled high sliding velocities that are of engineering importance to be reached. By incorporating high speed piezo stages in a commercial AFM it is possible to conduct fundamental studies at sliding velocities of scientific as well as engineering importance. The utility of the technique is demonstrated through the mapping of nanoscale friction and wear as a function of sliding velocities. These maps provide significant understanding of the dominant frictionmechanisms as well as the conditions at which they transition andwould potentially enable selection ofmaterials, coatings and lubricants during the design of nanotechnology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amontons G (1699) Mem Acad R A 257–282

    Google Scholar 

  2. Anonymous (1999) Nanoscope® command reference manual, version 4.42, appendix D: lithography

    Google Scholar 

  3. Anonymous (2002) Pilot motion processor user’s guide. Performance Motion Devices, Lincoln

    Google Scholar 

  4. Anonymous (2003) User manuals PZ-106E and PZ-62E. http://www.polytecpi.com

    Google Scholar 

  5. Baumberger T, Berthoud P, Caroli C (1999) Phys Rev B 60:3928–3939

    Article  CAS  Google Scholar 

  6. Bennewitz R, Meyer E, Bammerlin M, Gyalog T, Gnecco E (2001) In: Bhushan B (ed) Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales. Kluwer, Dordrecht, pp 53–66

    Google Scholar 

  7. Bhushan B (1997) Micro/nanotribology and its applications. NATO ASI series E: applied sciences, vol 330. Kluwer, Dordrecht

    Google Scholar 

  8. Bhushan B (1998) Tribology issues and opportunities in MEMS. Kluwer, Dordrecht

    Google Scholar 

  9. Bhushan B (1999a) Handbook of micro/nanotribology, 2nd edn. CRC, Boca Raton

    Google Scholar 

  10. Bhushan B (1999b) Principles and applications of tribology. Wiley, New York

    Google Scholar 

  11. Bhushan B (ed) (2001a) Modern tribology handbook, vol 2: materials, coatings and industrial applications. CRC, Boca Raton

    Google Scholar 

  12. Bhushan B (ed) (2001b) Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales. Kluwer, Dordrecht

    Google Scholar 

  13. Bhushan B (2003) J Vac Sci Technol B 21:2262–2296

    Article  CAS  Google Scholar 

  14. Bhushan B (ed) (2004) Springer handbook of nanotechnology. Springer, Heidelberg

    Google Scholar 

  15. Bhushan B, Kulkarni AV (1996) Thin Solid Films 278:49–56

    Article  CAS  Google Scholar 

  16. Bhushan B, Israelachvili JN, Landman U (1995) Nature 374:607–616

    Article  CAS  Google Scholar 

  17. Binnig G, Quate CF, Greber C (1986) Phys Rev Lett 56:930–933

    Article  Google Scholar 

  18. Bouhacina T, Aime JP, Gauthier S, Michel D (1997) Phys Rev B 56:7694–7703

    Article  CAS  Google Scholar 

  19. Bouquet L, Charlaix E, Ciliberto S, Crassous J (1998) Nature 396:735–737

    Article  CAS  Google Scholar 

  20. Bowden FP, Tabor D (1950) The friction and lubrication of solids, part I. Clarendon, Oxford

    Google Scholar 

  21. Bowden FP, Tabor D (1964) The friction and lubrication of solids, part II. Clarendon, Oxford

    Google Scholar 

  22. Carpick RW, Salmeron M (1997) Chem Rev 97:1163–1944

    Article  CAS  Google Scholar 

  23. Coulomb CA (1785) Mem Math Phys X Paris 161–342

    Google Scholar 

  24. Feynman RP (1960) Eng Sci 23:22–36

    Google Scholar 

  25. Frechette LG, Jacobson SA, Breuer KS, Ehrich FF, Ghodssi R, Khanna R, Wong CW, Zhang X, Schmidt MA, Epstein A (2005) J Microelectromech Syst 14:141–152

    Article  Google Scholar 

  26. Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Guntherodt H-J (2000) Phys Rev Lett 84:1172–1175

    Article  CAS  Google Scholar 

  27. Gnecco E, Bennewitz R, Pfeiffer O, Socoliuc A, Meyer E (2004) In: Bhushan B (ed) Springer handbook of nanotechnology. Springer, Heidelberg, pp 631–660

    Chapter  Google Scholar 

  28. Grill A (1997) Surf Coat Technol 94–95, 507–513

    Google Scholar 

  29. Hoshi Y, Kawagishi T, Kawakatsu H (2000) Jpn J Appl Phys Part 1 39:3804–3807

    Article  CAS  Google Scholar 

  30. Johnson KL, Woodhouse J (1998) Tribol Lett 5:155–160

    Article  CAS  Google Scholar 

  31. Koinkar V, Bhushan B (1996) J Vac Sci Technol A 14:2378–2391

    Article  CAS  Google Scholar 

  32. Komvopoulos K (2003) J Adhes Sci Technol 17:477–517

    Article  CAS  Google Scholar 

  33. Lehr H, Abel S, Doppler J, Ehrfeld W, Hagemann B, Kamper KP, Michel F, Schulz C, Thurigeen C (1996) Proc SPIE 2906:202–210

    Article  Google Scholar 

  34. Lim SC, Ashby MF (1987) Acta Metall 35:1–24

    Article  CAS  Google Scholar 

  35. Lim SC, Ashby MF, Brunton JH (1987) Acta Metall 35:1343–1348

    Article  CAS  Google Scholar 

  36. Liu H, Bhushan B (2002) Ultramicroscopy 91:185–202

    Article  CAS  Google Scholar 

  37. Liu H, Bhushan B (2003a) Ultramicroscopy 97:321–340

    Article  CAS  Google Scholar 

  38. Liu H, Bhushan B (2003b) J Vac Sci Technol A 24:1528–1538

    Article  CAS  Google Scholar 

  39. Maboudian R, Howe RT (1997) J Vac Sci Technol B 15:1–20

    Article  CAS  Google Scholar 

  40. Marti O, Krotil H-U (2001) In: Bhushan B (ed) Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales. Kluwer, Dordrecht, pp 121–135

    Google Scholar 

  41. Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Phys Rev Lett 59:1942–1945

    Article  CAS  Google Scholar 

  42. Mizuhara K, Hsu SM (1992) In: Dowson D et al (eds) Wear particles, Elsevier, Amsterdam, pp 323–328

    Google Scholar 

  43. Moore DF (1972) The friction and lubrication of elastomers, 1st edn, Pergamon, New York

    Google Scholar 

  44. Reinstadtler M, Rabe U, Scherer V, Hartmann U, Goldade A, Bhushan B, Arnold W (2003) Appl Phys Lett 82:2604–2606

    Article  CAS  Google Scholar 

  45. Riedo E, Levy F, Brune H (2002) Phys Rev Lett 88:185505-1–185505-4

    Google Scholar 

  46. Riedo E, Gnecco E, Bennewitz R, Meyer E, Brune H (2003) Phys Rev Lett 91:084502-1–084502-4

    Google Scholar 

  47. Roco MC (2003) MRS Bull 28:416–418

    Google Scholar 

  48. Ruths M, Berman AD, Israelachvili JN (2004) In: Bhushan (ed) Springer handbook of nanotechnology. Springer, Heidelberg, pp 585–591

    Google Scholar 

  49. Scherer V, Bhushan B, Arnold W (1999) Surf Interface Anal 27:578–586

    Article  CAS  Google Scholar 

  50. Singer IL, Pollock HM (1992) Fundamentals of friction: macroscopic and microscopic processes. NATO series E: applied sciences, vol 220. Kluwer, Boston

    Google Scholar 

  51. Spearing SM, Chen KS (1997) Ceram Eng Sci Proc 18:11–18

    Article  CAS  Google Scholar 

  52. Sundararajan S, Bhushan B (2001) J Mater Res 16:437–445

    CAS  Google Scholar 

  53. Tai YC, Fan LS, Muller RS (1989) Proc IEEE Micro Electro Mech Syst 1–6

    Google Scholar 

  54. Tambe NS (2005) Nanotribological investigations of materials, coatings and lubricants for nanotechnology applications at high sliding velocities. PhD dissertation, The Ohio State University. http://www.ohiolink.edu/etd/send-pdf.cgi?osu1109949835

    Google Scholar 

  55. Tambe NS, Bhushan B (2004) Nanotechnology 15:1561–1570

    Article  CAS  Google Scholar 

  56. Tambe NS, Bhushan B (2005a) J Phys D Appl Phys 38:764–773

    Article  CAS  Google Scholar 

  57. Tambe NS, Bhushan B (2005b) Nanotechnology 16:2309–2324

    Article  Google Scholar 

  58. Tambe NS, Bhushan B (2005c) J Vac Sci Technol A 23:830–835

    Article  CAS  Google Scholar 

  59. Tambe NS, Bhushan B (2005d) Ultramicroscopy 105:238–247

    Article  CAS  Google Scholar 

  60. Tambe NS, Bhushan B (2005e) Scr Mater 52:751–755

    Article  CAS  Google Scholar 

  61. Tambe NS, Bhushan B (2005f) Appl Phys Lett 86:061906:1-3

    Google Scholar 

  62. Tambe NS, Bhushan B (2005g) Nanotechnology 16:1549–1558

    Article  CAS  Google Scholar 

  63. Tambe NS, Bhushan B (2005h) Tribol Lett 20:83–90

    Article  CAS  Google Scholar 

  64. Tambe NS, Bhushan B (2005i) Appl Phys Lett 86:193102

    Article  CAS  Google Scholar 

  65. Tao Z, Bhushan B (2006) Rev Sci Instrum 77:103705

    Article  CAS  Google Scholar 

  66. Tao Z, Bhushan B (2007) J Vac Sci Technol A 25:1267–1274

    Article  CAS  Google Scholar 

  67. Tománek D, Zhong W, Thomas H (1991) Europhys Lett 15:887–892

    Article  Google Scholar 

  68. Tomlinson GA (1929) Philos Mag Ser 7(7):905–939

    CAS  Google Scholar 

  69. Yamanaka K, Tomita E (1995) Jpn J Appl Phys 34:2879–2882

    Article  CAS  Google Scholar 

  70. Zwörner O, Hölscher H, Schwarz UD, Wiesendanger R (1998) Appl Phys A 66:S263–S267

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tambe, N., Bhushan, B. (2008). High Sliding Velocity Nanotribological Investigations of Materials for Nanotechnology Applications. In: Tomitori, M., Bhushan, B., Fuchs, H. (eds) Applied Scanning Probe Methods IX. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74083-4_11

Download citation

Publish with us

Policies and ethics