Skip to main content

Cantilever Spring-Constant Calibration in Atomic Force Microscopy

  • Chapter
Applied Scanning Probe Methods VIII

Part of the book series: Nano Science and Technolgy ((NANO))

Abstract

The measurement of small forces by atomic force microscopy (AFM) is of increasing importance in many applications. For example, in analytical applications where individual molecules are probed, or nanoindentation measurements as a source of information about materials properties on a nanometer scale. The fundamentals of AFM force measurement, and some of these applications, are briefly reviewed. In most cases absolute, not relative, measurements of forces are needed for valid comparisons with theory and other measurement techniques (such as optical tweezers). We review methods of AFM force calibration and the major uncertainties involved. The force range considered in this work is roughly from 10 pN to around 500 nN. We describe some issues of the repeatability of force measurements that can be important in common AFM instruments. In most cases the aspect that then limits the accuracy with which forces can be measured is the uncertainty in the stiffness (more specifically the normal force constant) of the atomic force microscope cantilever at the center of the instrument. It is known that commercially available microfabricated atomic force microscope cantilevers have a wide range of force constant, for cantilevers of nominally the same type and even the same production batch. Calibration is necessary, and many methods have been used over the years. We compare the accuracy that can be achieved and the ease of use of these different methods, including theoretical (dimensional), thermal, static and dynamic methods and their variants. A device developed at NPL should help overcome many of the problems of force constant calibration, at least for the most common AFM configurations. This is a microfabricated silicon device, which, because of its very small mass, is not susceptible to vibration as a larger device would be. A new calibration method based on electrical and Doppler measurements allows the calibration of the force constant of this device traceable to the SI newton. It can then be sent to AFM users for straightforward calibration of AFM force constants. We conclude with a brief discussion of the special problems of calibration of lateral forces, such as those obtained in frictional force measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig G (1986) Phys Rev Lett 56:930–933

    Article  Google Scholar 

  2. Albrecht TR, Quate CF (1987) J Appl Phys 62:2599–2602

    Article  Google Scholar 

  3. Marti O, Drake B, Hansma PK (1987) Applied Phys Lett 51:484–486

    Article  Google Scholar 

  4. Marti O, Ribi HO, Drake B, Albrecht TR, Quate CF, Hansma PK (1988) Science 239:50–51

    Article  Google Scholar 

  5. McClelland GM, Erlandsson R, Chiang S (1987) Rev Prog Quant Non-destruc Eval 6:1307

    Article  Google Scholar 

  6. Martin Y, Williams CC, Wickramasinghe HK (1987) J Appl Phys 61:4723–4729

    Article  Google Scholar 

  7. Martin Y, Wickramasinghe HK (1987) Appl Phys Lett 50(20):1455

    Article  Google Scholar 

  8. Mate CM, McClelland GM, Erlandsson R, Chiang S (1987) Phys Rev Lett 59:1942–1945

    Article  Google Scholar 

  9. Stern JE, Terris BD, Mamin HJ, Rugar D (1988) Appl Phys Lett 53(26):2717–2719

    Article  Google Scholar 

  10. Rugar D, Mamin HJ, Guethner P (1989) Appl Phys Lett 55(25):2588–2590

    Article  Google Scholar 

  11. Tortonese M, Barrett RC, Quate CF (1993) Appl Phys Lett 62(8):834–836

    Article  Google Scholar 

  12. Sarid D (1994) Scanning force microscopy. Oxford University Press, Oxford

    Google Scholar 

  13. Meyer G, Amer NM (1988) Appl Phys Lett 53(24):2400–2402

    Article  Google Scholar 

  14. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) J Appl Phys 65:164–167

    Article  Google Scholar 

  15. Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Science 243:1586–1589

    Article  Google Scholar 

  16. Hu Z, Seeley T, Kossek S, Thundat T (2004) Rev Sci Instrum 75(2):400–404

    Article  Google Scholar 

  17. Albrecht TR, Grütter P, Horne D, Rugar D (1991) J Appl Phys 69(2):668–673

    Article  Google Scholar 

  18. García R, Pérez R (2002) Surf Sci Rep 47:197–301

    Article  Google Scholar 

  19. Hutter JL, Bechhoefer J (1994) J Vac Sci Technol 12(3):2251–2253

    Article  Google Scholar 

  20. Ducker WA, Senden TJ, Pashley RM (1992) Langmuir 8:1831–1836

    Article  Google Scholar 

  21. Lee GU, Chrisey LA, Colton RJ (1994) Science 266:771–773

    Article  Google Scholar 

  22. Florin EL, Rief M, Lehmann H, Ludwig M, Dornmair C, Moy VT, Gaub HE (1995) Biosens Bioelectron 10:895–901

    Article  Google Scholar 

  23. Strunz T, Oroszlan K, Schäfer R, Güntherodt HJ (1999) Proc Natl Acad Sci USA 96:11277–11282

    Article  Google Scholar 

  24. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Proc Natl Acad Sci USA 93:3477–3481

    Article  Google Scholar 

  25. Allen S, Chen X, Davies J, Davies MC, Dawkes AC, Edwards JC, Roberts CJ, Sefton J, Tendler SJB, Williams PM (1997) Biochemistry 36:7457–7463

    Article  Google Scholar 

  26. Lee GU, Kidwell DA, Colton RJ (1994) Langmuir 10:354–357

    Article  Google Scholar 

  27. Florin EL, Moy VT, Gaub HE (1994) Science 264:415–417

    Article  Google Scholar 

  28. Kienberger F, Pastushenko VP, Kada G, Gruber HJ, Riener C, Schindler H, Hinterdorfer P (2000) Single Mol 1(2):123–128

    Article  Google Scholar 

  29. Oesterhelt F, Rief M, Gaub HE (1999) New J Phys 1:6.1–6.11

    Google Scholar 

  30. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Science 276:1109–1112

    Article  Google Scholar 

  31. Petersen K, Guarnieri CR (1979) J Appl Phys 50(11):6761–6766

    Article  Google Scholar 

  32. Pratt JR, Smith DT, Newell DB, Kramar JA, Whitenton E (2004) J Mater Res 19:366–379

    Article  Google Scholar 

  33. Hutter JL, Bechhoefer J (1993) Rev Sci Instrum 64:1868–73

    Article  Google Scholar 

  34. Butt H-J, Jaschke M (1995) Nanotechnology 6:1–7

    Article  Google Scholar 

  35. Lévy R, Maaloum M (2002) Nanotechnology 13:33–37

    Article  Google Scholar 

  36. Burnham NA, Chen X, Hodges CS, Matei GA, Thoreson EJ, Roberts CJ, Davies MC, Tendler SJB (2003) Nanotechnology 14:1–6

    Article  Google Scholar 

  37. Tortonese M, Kirk M (1997) SPIE Proc 3009:53–60

    Article  Google Scholar 

  38. Cumpson PJ, Hedley J, Zhdan P (2003) Nanotechnology 14:918–924

    Article  Google Scholar 

  39. Cumpson PJ, Zhdan P, Hedley J (2004) Ultramicroscopy 100:241–251

    Article  Google Scholar 

  40. Sow C, Grier DG (1996) Abstract for the March meeting of the APS, 20–24 March, St Louis

    Google Scholar 

  41. Gallop JC (2002) UK Patent GB017812, 31 July

    Google Scholar 

  42. Holbery JD, Eden VL, Sarikaya M, Fisher RM (2000) Rev Sci Instrum 71(10):3769–3776

    Article  Google Scholar 

  43. Scholl D, Everson MP, Jaclevic RC (1994) Rev Sci Instrum 65(7):2255–2257

    Article  Google Scholar 

  44. Sader JE (2003) Rev Sci Instrum 74:2438

    Article  Google Scholar 

  45. Sader JE, White L (1993) J Appl Phys 74(1):1–9

    Article  Google Scholar 

  46. Clifford CA, Seah MP (2005) Nanotechnology 16(9):1666–1680

    Article  Google Scholar 

  47. Albrecht TR, Akamine S, Carver TR, Quate CF (1990) J Vac Sci Technol A 8(4):3386–3396

    Article  Google Scholar 

  48. Sader JE (1995) Rev Sci Instrum 66:4583–4587

    Article  Google Scholar 

  49. Neumeister JM, Ducker WA (1994) Rev Sci Instrum 65:2527–2531

    Article  Google Scholar 

  50. Albrecht TR, Akamine S, Carver TE, Quante CF (1990) J Vac Sci Technol A 8:3386

    Article  Google Scholar 

  51. Sader JE, White E (1994) J Appl Phys 74:1

    Article  Google Scholar 

  52. Sader JE (1995) Rev Sci Instrum 66:4583

    Article  Google Scholar 

  53. Tortonese M (1997) IEE Eng Med Biol 16:28

    Article  Google Scholar 

  54. Sarid D (1997) Exploring scanning probe microscopy with Mathematica. Wiley, New York

    Google Scholar 

  55. Butt H-J, Siedle P, Seifert K, Fendler K, Seeger T, Bamberg E, Wiesenhorn AL, Goldie K, Engel A (1992) J Microsc 169:75

    Article  Google Scholar 

  56. Sader JE, Larson I, Mulvaney P, White LR (1995) Rev Sci Instrum 66(7):3789–3798

    Article  Google Scholar 

  57. Sader JE (1998) J Appl Phys 84(1):64–76

    Article  Google Scholar 

  58. Chon JEM, Mulvaney P, Sader JE (2000) J Appl Phys 87(8):3978–3988

    Article  Google Scholar 

  59. Sader JE, Chon JWM, Mulvaney P (1999) Rev Sci Instrum 70(10):3967–3969

    Article  Google Scholar 

  60. Sader JE, Pacifico J, Green JP, Mulvaney P (2005) J Appl Phys 97(124903):1–7

    Google Scholar 

  61. JP Cleveland, S Manne, D Bocek, PK Hansma (1993) Rev Sci Instrum 64(2):403–405

    Article  Google Scholar 

  62. CT Gibson, BL Weeks, JR Lee, C Abell, T Rayment (2001) Rev Sci Instrum 72(5):2340

    Article  Google Scholar 

  63. Lubarsky GV, Haehner G (2007) Review of Scientific Instruments 78:095102-1

    Article  Google Scholar 

  64. Callen HB (1985) Thermodynamics and an introduction to thermostatistics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  65. Stark RW, Drobek T, Heckl WM (2001) Ultramicroscopy 86:207–215

    Article  Google Scholar 

  66. Ramirez RW (1985) The FFT fundamentals and concepts. Prentice Hall, Englewood Cliffs

    Google Scholar 

  67. Proksch R, Schäffer TE, Cleveland JP, Callahan RC, Viani MB (2004) Nanotechnology 15:1344–1350

    Article  Google Scholar 

  68. Matei GA, Thoreson EJ, Pratt JR, Newell DB, Burnham NA (2006) Rev Sci Instrum 77(083703):1–6

    Google Scholar 

  69. Johnstone JE, Clifford CA (2003) Force repeatability in imaging forces and force vs distance spectroscopy using an atomic force microscope, DQL report. NPL, Teddington, UK

    Google Scholar 

  70. Clifford CA, Seah MP (2005) Appl Surf Sci 252(5):1915–1933

    Article  Google Scholar 

  71. Cumpson PJ, Hedley J (2003) Nanotechnology 14:1279–1288

    Article  Google Scholar 

  72. Choi I, Kim M, Woo S, Kim SH (2004) Meas Sci Technol 15:237–243

    Article  Google Scholar 

  73. Ecke S, Raiteri R, Bonaccurso E, Reiner C, Deiseroth HJ, Butt HJ (2001) Rev Sci Instrum 72:4164–4170

    Article  Google Scholar 

  74. Dedkov GV (2000) Phys Status Solidi A 179:3–75

    Article  Google Scholar 

  75. Carpick RW, Salmeron M (1997) Chem Rev 97:1163–1194

    Article  Google Scholar 

  76. Carpick RW, Ogletree DF, Salmeron M (1997) Appl Phys Lett 70:1548–1550

    Article  Google Scholar 

  77. Ogletree DF, Carpick RW, Salmeron M (1996) Rev Sci Instrum 67:3298–3306

    Article  Google Scholar 

  78. Sader JE, Green CP (2004) Rev Sci Instrum 75:878–883

    Article  Google Scholar 

  79. Pietrement O, Beaudoin JL, Troyon M (1999) Tribol Lett 7:213–220

    Article  Google Scholar 

  80. Varenberg M, Etsion I, Halperin G (2003) Rev Sci Instrum 74:3362–3367

    Article  Google Scholar 

  81. Drobek T, Stark RW, Heckl WM (2001) Phys Rev B 64:045401

    Article  Google Scholar 

  82. Green CP, Lioe H, Cleveland JP, Proksch R, Mulvaney P, Sader JE (2004) Rev Sci Instrum 75:1988–1996

    Article  Google Scholar 

  83. Cannara RJ, Eglin M, Carpick RW (2006) Rev Sci Instrum 77:053701

    Article  Google Scholar 

  84. Cumpson PJ, Hedley J, Clifford CA (2005) J Vac Sci Technol B 23:1992–1997

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cumpson, P., Clifford, C., Portoles, J., Johnstone, J., Munz, M. (2008). Cantilever Spring-Constant Calibration in Atomic Force Microscopy. In: Bhushan, B., Fuchs, H., Tomitori, M. (eds) Applied Scanning Probe Methods VIII. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74080-3_8

Download citation

Publish with us

Policies and ethics