Skip to main content

Background-Free Apertureless Near-Field Optical Imaging

  • Chapter

Part of the book series: Nano Science and Technolgy ((NANO))

Abstract

The goal of this chapter is to review the theoretical background and the experimental techniques of apertureless scanning near-field optical microscopy (SNOM) artifact-free imaging. We describe the principles of apertureless SNOM, detailing the different detection schemes for artifact-free imaging: homodyne and heterodyne detection. Additionally, we detail the physical origin of the measured signals, describe optical artifacts, and discuss experimental techniques capable of artifact-free imaging. Finally, we provide an overview of the potential application of these techniques in materials science, nanophotonics, nanoplasmonics and soft-matter science.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Proc Natl Acad Sci USA 97:8206

    Article  Google Scholar 

  2. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Science 313:1642

    Article  Google Scholar 

  3. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Pohl DW, Denk W, Lanz M (1984) Appl Phys Lett 44:651

    Article  Google Scholar 

  5. Lewis A, Isaacson M, Harootunian A, Murray A (1984) Ultramicroscopy 13:227

    Article  Google Scholar 

  6. Synge EH (1928) Philos Mag 6:356

    Article  Google Scholar 

  7. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Science 251:1468

    Article  Google Scholar 

  8. Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW (2000) J Chem Phys 112:7761

    Article  Google Scholar 

  9. Gucciardi PG, Trusso S, Vasi C, Patanè S, Allegrini M (2006) In: Bhushan B, Fuchs H, Kawata S (eds) Applied scanning probe methods vol V. Springer, Berlin, p 287

    Google Scholar 

  10. Labardi M, Gucciardi PG, Allegrini M (2001) Riv Nuovo Cimento 23:1

    Google Scholar 

  11. Hecht B, Bielefeldt H, Inouye Y, Pohl DW, Novotny L (1997) J Appl Phys 81:2492

    Article  Google Scholar 

  12. Gucciardi PG, Colocci M (2001) Appl Phys Lett 79:1543

    Article  Google Scholar 

  13. Chicanne C, David T, Quidant R, Weeber JC, Lacroute Y, Bourillot E, Dereux A, Colas des Francs G, Girard C (2002) Phys Rev Lett 88:097402

    Article  Google Scholar 

  14. Zenhausern F, O’Boyle MP, Wickramasinghe HK (1994) Appl Phys Lett 65:1623

    Article  Google Scholar 

  15. Bachelot R, Gleyzes P, Boccara AC (1995) Opt Lett 20:1924

    Article  Google Scholar 

  16. Inouye Y, Kawata S (1994) Opt Lett 19:159

    Article  Google Scholar 

  17. Novotny L, Stranick SJ (2006) Annu Rev Phys Chem 57:303

    Article  Google Scholar 

  18. Hillenbrand R, Keilmann F (2000) Phys Rev Lett 85:3029

    Article  Google Scholar 

  19. Hillenbrand R, Keilmann F (2002) Appl Phys Lett 80:25

    Article  Google Scholar 

  20. Labardi M, Patanè S, Allegrini M (2000) Appl Phys Lett 77:621

    Article  Google Scholar 

  21. Taubner T, Keilmann F, Hillenbrand R (2004) Nanolett 4:1669

    Article  Google Scholar 

  22. Stebunova L, Abramitchev BB, Walker GC (2003) Rev Sci Instrum 74:3670

    Article  Google Scholar 

  23. Hillenbrand R, Taubner T, Keilmann F (2002) Nature 418:159

    Article  Google Scholar 

  24. Ocelic N, Hillenbrand R (2004) Nat Mat 3:606

    Article  Google Scholar 

  25. Binnig G, Rohrer H, Gerber C, Weibel E (1982) Phys Rev Lett 49:57

    Article  Google Scholar 

  26. Binnig G, Quate CF, Gerber C (1986) Phys Rev Lett 56:930

    Article  Google Scholar 

  27. Betzig E, Finn PL, Weiner JS (1992) Appl Phys Lett 60:2484

    Article  Google Scholar 

  28. Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M (1992) Appl Phys Lett 60:2957

    Article  Google Scholar 

  29. Karrai K, Grober RD (1995) Appl Phys Lett 66:1842

    Article  Google Scholar 

  30. Shalaev V, Sarychev A (1998) Phys Rev B 57:13265

    Article  Google Scholar 

  31. Xu H, Aizpurua J, Kall M, Apell P (2000) Phys Rev E 62:4318

    Article  Google Scholar 

  32. Wessel J (1985) JOSA B-Optical Physics 2:1538–41

    Article  Google Scholar 

  33. Bek A, Vogelgesang R, Kern K (2006) Rev Sci Instrum 77:043703

    Article  Google Scholar 

  34. Patanè S, Gucciardi PG, Labardi M, Allegrini M (2004) Riv Nuovo Cimento 27:1

    Google Scholar 

  35. Zenhausern F, Martin Y, Wickramasinghe HK (1995) Science 269:1083

    Article  Google Scholar 

  36. Martin Y, Zenhausern F, Wickramasinghe HK (1996) Appl Phys Lett 68:2475

    Article  Google Scholar 

  37. Garcia N, Nieto-Vesperinas M (1995) Appl Phys Lett 66:3399

    Article  Google Scholar 

  38. Azoulay J, Debarre A, Richard A, Tchenio P (2000) Appl Opt 39:129

    Article  Google Scholar 

  39. Maghelli N, Labardi M, Patanè S, Irrera F, Allegrini M (2001) J Microsc Oxf 202:84

    Article  Google Scholar 

  40. Formanek F, De Wilde Y, Aigouy L (2003) J Appl Phys 93:9548

    Article  Google Scholar 

  41. Knoll B, Keilmann F (2000) Opt Commun 182:321

    Article  Google Scholar 

  42. Roy D, Leong SH, Elland M (2005) J Kor Phys Soc 47:S140

    Google Scholar 

  43. Gomez L, Bachelot R, Bouhelier A, Wiederrecht GP, Chang S, Gray SK, Lerondel G, Hua F, Jeon S, Rogers JA, Castro ME, Blaize S, Stefanon I, Royer P (2006) J Opt Soc Am B 23:823

    Article  Google Scholar 

  44. Ocelic N, Huber A, Hillenbrand R (2006) Appl Phys Lett 89:101124

    Article  Google Scholar 

  45. Gucciardi PG, Bachelier G, Allegrini M (2006) J Appl Phys 99:124309

    Article  Google Scholar 

  46. Gucciardi PG, Bachelier G, Allegrini M, Ahn J, Hong M, Chang S, Jhe W, Hong SC, Baek SH (2007) J Appl Phys (in press)

    Google Scholar 

  47. Formanek F, De Wilde Y, Aigouy L (2003) J Appl Phys 93:9548

    Article  Google Scholar 

  48. Formanek F, De Wilde Y, Aigouy L (2005) Ultramicroscopy 103:133

    Article  Google Scholar 

  49. Spiegel MR, Liu J (1999) Mathematical handbook of formulas and tables. McGraw-Hill New York

    Google Scholar 

  50. Billot L, Lamy de la Chapelle M, Barchiesi D, Chang SH, Gray SK, Rogers J, Bouhelier A, Adam PM, Bijeon JL, Wiederrecht GP, Bachelot R, Royer P (2006) Appl Phys Lett 89:0123051

    Google Scholar 

  51. Adam PM, Royer P, Laddada R, Bijeon JL (1998) Ultramicroscopy 71:327

    Article  Google Scholar 

  52. Novotny L, Bian RX, Xie XS (1997) Phys Rev Lett 79:645

    Article  Google Scholar 

  53. Bachelot R, H’Dhili F, Barchiesi D, Lerondel G, Fikri R, Royer P, Landraud N, Peretti J, Chaput F, Larnpel G, Boilot JP, Lahlil K (2003) J Appl Phys 94:2060

    Article  Google Scholar 

  54. Hillenbrand R, Keilmann F (2002) Appl Phys Lett 80:25

    Article  Google Scholar 

  55. Hillenbrand R (2004) Ultramicroscopy 100:421

    Article  Google Scholar 

  56. Taubner T, Hillenbrand R, Keilmann F (2003) J Microsc Oxf 210:311

    Article  MathSciNet  Google Scholar 

  57. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Phys Rev Lett 78:1667

    Article  Google Scholar 

  58. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) Nano Lett 6:2225

    Article  Google Scholar 

  59. Salerno M, Krenn JR, Lamprecht B, Schnider G, Ditlbacher H, Felidj N, Leitner A, Aussenegg FR (2002) Optoelectron Rev 10:217

    Google Scholar 

  60. Wurtz GA, Im JS, Gray SK, Wiederrecht GP (2003) J Phys Chem B 107:14191

    Article  Google Scholar 

  61. Bouhelier A, Bachelot R, Im JS, Wiederrecht GP, Lerondel G, Kostcheev S, Royer P (2005) J Phys Chem B 109:3195

    Article  Google Scholar 

  62. Krenn JR, Gotschy W, Somitsch D, Leitner A, Aussenegg FR (1995) Appl Phys Mater Sci Proc 61:541

    Article  Google Scholar 

  63. Klar T, Perner M, Grosse S, von Plessen G, Spirkl W, Feldmann J (1998) Phys Rev Lett 80:4249

    Article  Google Scholar 

  64. Hamann HF, Gallagher A, Nesbitt DJ (1998) Appl Phys Lett 73:1469

    Article  Google Scholar 

  65. Hillenbrand R, Keilmann F, Hanarp P, Sutherland DS, Aizpurua J (2003) Appl Phys Lett 83:368

    Article  Google Scholar 

  66. Keilmann F, Hillenbrand R (2004) Philos Trans R Soc Lond Ser A 362:787

    Article  Google Scholar 

  67. Stefanon I, Blaize S, Bruyant A, Aubert S, Lerondel G, Bachelot R, Royer P (2005) Opt Express 13:5553

    Article  Google Scholar 

  68. Huber A, Ocelic N, Kazantsev D, Hillenbrand R (2005) Appl Phys Lett 87:81103

    Article  Google Scholar 

  69. Weeber JC, Lacroute Y, Dereux A, Devaux E, Ebbesen T, Girard C, Gonzalez MU, Baudrion AL (2004) Phys Rev B 70:235406

    Article  Google Scholar 

  70. Huber A, Ocelic N, Taubner T, Hillenbrand R (2006) Nano Lett 6:774

    Article  Google Scholar 

  71. Brehm M, Taubner T, Hillenbrand R, Keilmann F (2006) Nano Lett 6:1307

    Article  Google Scholar 

  72. Taubner T, Keilmann F, Hillenbrand R (2005) Opt Express 12:8893

    Article  Google Scholar 

  73. Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Science 313:1595

    Article  Google Scholar 

  74. Pendry JB (2000) Phys Rev Lett 85:3966

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gucciardi, P., Bachelier, G., Stranick, S., Allegrini, M. (2008). Background-Free Apertureless Near-Field Optical Imaging. In: Bhushan, B., Fuchs, H., Tomitori, M. (eds) Applied Scanning Probe Methods VIII. Nano Science and Technolgy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74080-3_1

Download citation

Publish with us

Policies and ethics