Skip to main content

The Use of ACC Deaminase-Containing Plant Growth-Promoting Bacteria to Protect Plants Against the Deleterious Effects of Ethylene

  • Chapter
  • 972 Accesses

Plant growth-promoting bacteria can affect plant growth and development in two different ways: indirectly or directly (Glick 1995; Glick et al. 1999). Indirect promotion of plant growth occurs when these bacteria decrease or prevent some of the deleterious effects of a phytopathogenic organism by any one or more of several different mechanisms. In general, bacteria can directly promote plant growth by providing the plant with a compound that is synthesized by the bacterium or facilitating the uptake of nutrients.

There are several ways in which plant growth-promoting bacteria can directly facilitate the proliferation of their plant hosts. They may fix atmospheric nitrogen; produce siderophores which can solubilize and sequester iron and provide it to plants; synthesize phytohormones, including auxins, cytokinins, and gibberellins which can enhance various stages of plant growth; solubilize minerals such as phosphorus; and synthesize enzymes that can modulate plant growth and development (Brown 1974; Kloepper et al. 1986, 1989; Davison 1988; Lambert and Joos 1989; Patten and Glick 1996; Glick et al. 1999). A particular bacterium may affect plant growth and development using any one, or more, of these mechanisms.Moreover, many plant growthpromoting bacteria possess several properties that enable them to facilitate plant growth and, of these, may utilize different ones at various times during the life cycle of the plant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Reading

  • Abeles FB (1973) Ethylene in plant biology. Academic Press, New York, 302 pp

    Google Scholar 

  • Abeles FB, Morgan PW, Saltveit ME Jr (1992) Ethylene in plant biology, 2nd edn. Acade-mic Press, San Diego

    Google Scholar 

  • Bashan Y (1994) Symptom expression and ethylene production in leaf blight of cotton caused by Alternaria macrospora and Alternaria alternata alone and combined. Can J Bot 72:1574-1579

    Article  CAS  Google Scholar 

  • Belimov AI, Safronova, VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz K-J, Stepanok VV (2001) Char-acterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 27:642-652

    Article  Google Scholar 

  • Bestwick RK, Ferro AJ (1998) Reduced ethylene synthesis and delayed fruit ripening in transgenic tomatoes expressing S-adenosylmethionine hydrolase. US Patent No: 5, 723, 746

    Google Scholar 

  • Biles CL, Abeles FB, Wilson CL (1990) The role of ethylene in anthracnose of cucumber, Cucumis sativus, caused by Colletotrichum lagenarium. Phytopathology 80732-736

    Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65:322-326

    Article  CAS  PubMed  Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12:181-197

    Article  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663-3668

    CAS  PubMed  Google Scholar 

  • Campbell BG, Thomson JA (1996) 1-Aminocyclopropane-1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbiol Lett 138:207-210

    Article  CAS  PubMed  Google Scholar 

  • Cohen R, Riov J, Lisker N, Katan J (1986) Involvement of ethylene in herbicide-induced resistance to Fusarium oxysporum f. sp. melonis. Phytopathology 76:1281-1285

    Article  CAS  Google Scholar 

  • Cronshaw DK, Pegg GF (1976) Ethylene as a toxin synergist in Verticillium wilt of tomato. Physiol Plant Pathol 9:33-38

    Article  CAS  Google Scholar 

  • Davison J (1988) Plant beneficial bacteria. Bio/Technology 6:282-286

    Article  CAS  Google Scholar 

  • Elad Y (1988) Involvement of ethylene in the disease caused by Botrytis cinerea on rose and carnation flowers and the possibility of control. Ann Appl Biol 113:589-598

    Article  CAS  Google Scholar 

  • Elad Y (1990) Production of ethylene in tissues of tomato, pepper, French-bean and cucumber in response to infection by Botrytis cinerea. Physiol Mol Plant Pathol 36:277-287

    Article  CAS  Google Scholar 

  • Else MA, Jackson MB (1998) Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Aust J Plant Physiol 25:453-458

    Article  CAS  Google Scholar 

  • Fallik E, Sarig S, Okon Y (1994) Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 77-85

    Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soil. Marcel Dekker, New York

    Google Scholar 

  • Fukuda H, Ogawa T, Tanase S (1993) Ethylene production by microorganisms. Adv Microb Physiol 35:275-306

    Article  CAS  PubMed  Google Scholar 

  • Gaudin V, Vrain T, Jouanin L (1994) Bacterial genes modifying hormonal balances in plants. Plant Physiol Biochem 32:11-29

    CAS  Google Scholar 

  • Giovanelli J, Mudd SH, Datko AH (1980) Sulfur amino acids in plants. In: Miflin BJ (ed) Amino acids and derivatives, the biochemistry of plants: a comprehensive treatise. vol 5. Academic Press, New York, pp 453-505

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Micro-biol 41:109-117

    Article  CAS  Google Scholar 

  • Glick BR, Jacobson CB, Schwarze MK, Pasternak JJ (1994) A1-Aminocyclopropane-1-car-boxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911-915

    Article  CAS  Google Scholar 

  • Glick BR, Karaturovíc DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533-536

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentra-tions by plant growth-promoting bacteria. J Theor Biol 190:63-68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mecha-nisms used by plant growth-promoting bacteria. Imperial College Press, London

    Google Scholar 

  • Grichko VP, Glick BR (2000) Identification of DNA sequences that regulate the expres-sion of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate deami-nase gene. Can J Microbiol 46:1159-1165

    Article  CAS  PubMed  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-con-taining plant growth-promoting bacteria. Plant Physiol Biochem 39:11-17

    Article  CAS  Google Scholar 

  • Honma M (1985) Chemically reactive sulfhydryl groups of 1-aminocyclopropane-1-car-boxylate deaminase. Agric Biol Chem 49:567-571

    CAS  Google Scholar 

  • Honma M (1993) Stereospecific reaction of 1-aminocyclopropane-1-carboxylate deami-nase. In: Pech JC, Latché A, Balagué C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer, Dordrecht, pp 111-116

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825-1831

    CAS  Google Scholar 

  • Hyodo H (1991) Stress/wound ethylene. In: Mattoo AK, Suttle JC (eds) The plant hor-mone ethylene. CRC Press, Boca Raton, pp 65-80

    Google Scholar 

  • Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019-1025

    Article  CAS  Google Scholar 

  • Jia Y-J, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542-549

    Article  CAS  PubMed  Google Scholar 

  • Jia Y-J, Ito H, Matsui H, Honma M (2000) A1-Aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces. Biosci Biotechnol Biochem 64:299-305

    Article  CAS  PubMed  Google Scholar 

  • John P (1991) How plant molecular biologists revealed a surprising relationship between two enzymes, which took an enzyme out of a membrane where it was not located, and put it into the soluble phase where it could be studied. Plant Mol Biol Rep 9:192-194

    Article  Google Scholar 

  • Kende H (1989) Enzymes of ethylene biosynthesis. Plant Physiol 91:1-4

    Article  CAS  PubMed  Google Scholar 

  • Kende H (1993) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283-307

    Article  CAS  Google Scholar 

  • Klee HJ, Kishore GM (1992) Control of fruit ripening and senescence in plants. US Patent No: 5, 702, 933

    Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187-1193

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Scher FM, Laliberté M, Tipping B (1986) Emergence-promoting rhizobac-teria: description and implications for agriculture. In: Swinburne TR (ed) Iron, siderophores, and plant disease. Plenum, New York, pp 155-164

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39-43

    Article  Google Scholar 

  • Lambert B, Joos H (1989) Fundamental aspects of rhizobacterial plant growth promo-tion research. Trends Biotechnol 7:215-219

    Article  Google Scholar 

  • Li J, Glick BR (2001) Transcriptional regulation of the Enterobacter cloacae UW4 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene (acdS). Antonie van Leewenhoek 80:255-261

    Article  CAS  Google Scholar 

  • Li J, Ovakim DH, Charles TC, Glick BR (2000) An ACC deaminase minus mutant of Enter-obacter cloacae UW4 no longer promotes root elongation. Curr Microbiol 41:101-105

    Article  CAS  PubMed  Google Scholar 

  • Lund ST, Stall, RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371-382

    Article  CAS  PubMed  Google Scholar 

  • Mattoo AK, Suttle JC (1991) The plant hormone ethylene. CRC Press, Boca Raton

    Google Scholar 

  • Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Mat-sui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem 123:1112-1118

    CAS  PubMed  Google Scholar 

  • Mizutani F, Golam Rabbany ABM, Akiyoshi H (1998) Inhibition of ethylene production by tropolone compounds in young excised peach pits. J Jpn Soc Hortic Sci 67:166-169

    Article  CAS  Google Scholar 

  • Mol JNM, Holton TA, Koes RE (1995) Floriculture: genetic engineering of commercial traits. Trends Biotechnol 13:350-355

    Article  CAS  Google Scholar 

  • Morgan PW, Drew CD (1997) Ethylene and plant responses to stress. Physiol Plant 100:620-630

    Article  CAS  Google Scholar 

  • Nayani S, Mayak S, Glick BR (1998) The effect of plant growth promoting rhizobacteria on the senescence of flower petals. Ind J Exp Biol 36:836-839

    Google Scholar 

  • Nie L, Shah S, Rashid A, Burd GI, Dixon GD, Glick BR (2002) Phytoremediation of arsen-ate contaminated soil by transgenic canola and the plant growth-promoting bac-terium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355-361

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207-220

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacte-ria. Can J Microbiol 47:368-372

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Moffatt BM, Glick BR (2001) Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47:77-80

    Article  CAS  PubMed  Google Scholar 

  • Robinson MM, Shah S, Tamot B, Pauls PK, Moffatt BA, Glick BR (2001) Reduced symp-toms of Verticillium wilt in tomato plants transformed with ACC deaminase to con-trol ethylene biosynthesis. Mol Plant Pathol 2:135-145

    Article  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1997) ACC deaminase genes from plant growth pro-moting bacteria. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting rhizobacteria: present status and future prospects. OECD, Paris, pp 320-324

    Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deami-nase genes from two different plant growth promoting rhizobacteria. Can J Microbiol 44:833-843

    Article  CAS  PubMed  Google Scholar 

  • Sheehy RE, Honma M, Yamada M, Sasaki T, Martineau B, Hiatt WR (1991) Isolation, sequence, and expression in Escherichia coli of the Pseudomonas sp. strain ACP gene encoding 1-aminocyclopropane-1-carboxylate deaminase. J Bacteriol 173:5260-5265

    CAS  PubMed  Google Scholar 

  • Shiu OY, Oetiker JH, Yip WK, Yang SF (1998) The promoter of LE-ACS7, an early flood-ing-induced 1-aminocyclopropane carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc Natl Acad Sci USA 95:10334-10339

    Article  CAS  PubMed  Google Scholar 

  • Sisler EC, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100:577-582

    Article  CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubell DH (1979) Plant growth substances produced by Azospir-illum brasilense and their effect on the growth of pearl millet (Pennisetum ameri-canum L). Appl Environ Microbiol 37:1016-1024

    CAS  PubMed  Google Scholar 

  • Van Loon LC (1984) Regulation of pathogenesis and symptom expression in diseased plants by ethylene. In: Fuchs Y, Chalutz E (eds) Ethylene: biochemical, physiological and applied aspects. Martinus Nijhoff/Dr. W. Junk, The Hague, pp 171-180

    Google Scholar 

  • Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898-907

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (1990) Carbon utilization. In: Lynch JM (ed) The rhizosphere. Wiley Inter-science, Chichester, pp 59-97

    Google Scholar 

  • Woltering EJ, Van Doorn WG (1988) Role of ethylene in senescence of petals - morpho-logical and taxonomical relationships. J Exp Bot 39:1605-1616

    Article  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155-189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glick, B.R., Penrose, D.M. (2008). The Use of ACC Deaminase-Containing Plant Growth-Promoting Bacteria to Protect Plants Against the Deleterious Effects of Ethylene. In: Varma, A., Abbott, L., Werner, D., Hampp, R. (eds) Plant Surface Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74051-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74051-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74050-6

  • Online ISBN: 978-3-540-74051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics