Skip to main content

Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria

  • Chapter
Plant Surface Microbiology

The supply of photosynthates and decaying plant material to the root-associated microbiota is a key issue for rhizosphere formation and functioning. The release of organic material is known to occur mainly as root exudates, acting as either signals or growth substrates (Werner 1998). However, once the microbial population is established, rhizosphere developments are affected by microbially induced changes on rooting patterns and by the supply of available nutrients to plants, which in turn modify the quality and quantity of root exudates (Bowen and Rovira 1999; Barea 2000; Gryndler 2000). Microbial interactions in the rhizosphere are known to markedly influence plant fitness and soil quality (Lynch 1990; Bethlenfalvay and Schüepp 1994). In particular, microorganisms associated with plant roots help the host plant adapt to stress conditions concerning water and mineral nutrition, and soil-borne plant pathogens (Jeffries and Barea 2001).

From the point of view of plant surface microbiology, the compartmentalization of the rhizosphere (broad sense) is important. Kennedy (1998) suggested that there are three separate, but interacting components, namely the rhizosphere (soil), the rhizoplane, and the root itself. The rhizosphere is the zone of soil influenced by roots through the release of substrates that affect microbial activity. The rhizoplane is actually the root surface, but also includes the strongly adhering soil particles.The root itself is a part of the system because certain microorganisms, the endophytes, are able to colonize root tissues. Microbial colonization of the rhizoplane and/or the root tissues is known as root colonization, while the colonization of the adjacent volume of soil under the influence of the root is known as rhizosphere colonization (Kloepper et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Reading

  • Alabouvette C, Schippers B, Lemanceau P, Bakker PAHM (1997) Biological control of fusarium-wilts: towards development of commercial product. In: Boland GJ, KuykendallLD (eds) Plant microbe interactions and biological control. Marcel Dekker, New York, pp 15-36

    Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizos-phere and hyphosphere soils of different arbuscular mycorrhizal fungi. Plant Soil 192:71-79

    CAS  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89-96

    CAS  Google Scholar 

  • Atkinson S, Berta G, Hooker JE (1994) Impact of mycorrhizal colonisation on root archi-tecture, root longevity and the formation of growth regulators. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. ALS, Birkhäuser, Basel, Switzerland, pp 47-60

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbio-sis. Mycorrhiza 11:3-42

    Google Scholar 

  • Azcón R (1989) Selective interaction between free-living rhizosphere bacteria and vesic-ular-arbuscular mycorrhizal fungi. Soil Biol Biochem 21:639-644

    Google Scholar 

  • Azcón R (1993) Growth and nutrition of nodulated mycorrhizal and non-mycorrhizal Hedysarum coronarium as a result of treatments with fractions from a plant growthpromoting rhizobacteria. Soil Biol Biochem 25:1037-1042

    Google Scholar 

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fix-ation (15N) and nutrition of Medicago sativa L. New Phytol 117:399-404

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MJ (eds) Mycorrhizal functioning. An integra-tive plant-fungal process. Routledge, Chapman and Hall, New York, pp 163-198

    Google Scholar 

  • Azcón-Aguilar C, Bago B (1994) Physiological characteristics of the host plant promot-ing an undisturbed functioning of the mycorrhizal symbiosis. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. ALS, Birkhäuser, Basel, Switzerland, pp 47-60

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1995) Saprophytic growth of arbuscular-mycorrhizal fungi. In: Hock B, Varma A (eds) Mycorrhiza structure function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 391-407

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6:457-464

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68:1-24

    Google Scholar 

  • Azcón-Aguilar C, Palenzuela EJ, Barea JM (2000) Substrato para la producción de inócu-los de hongos formadores de micorrizas. Patente N. 9901814, Spain, CSIC

    Google Scholar 

  • Barea JM (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi L, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth-promoting rhizobacteria, present status and future prospects. OECD, Paris, pp 150-158

    Google Scholar 

  • Barea JM (2000) Rhizosphere and mycorrhiza of field crops. In: Toutant JP, Balazs E, Galante E, Lynch JM, Schepers JS, Werner D, Werry PA (eds) Biological resource man-agement: connecting science and policy (OECD). INRA, Editions and Springer, Berlin Heidelberg New York, pp 110-125

    Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (1992) Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing systems. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbi-ology. Academic Press, London, pp 391-416

    Google Scholar 

  • Barea JM, Azcón-Aguilar C, Azcón R (1997) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Oxford, pp 65-77

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcón-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for the biocontrol of soil-borne plant fungal pathogens. Appl Env-iron Microbiol 64:2304-2307

    CAS  Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubiliz-ing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic effi-ciency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35-42

    CAS  Google Scholar 

  • Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29:246-256

    CAS  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhi-zobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacte-ria) and PGPB. Soil Biol Biochem 30:1225-1228

    CAS  Google Scholar 

  • Bashan Y, Gonzalez LE (1999) Long-term survival of the plant-growth-promoting bacte-ria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Appl Microbiol Biotechnol 51:262-266

    CAS  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Arkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycor-rhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281-293

    PubMed  Google Scholar 

  • Bertrand H, Nalin R, Bally R, Cleyet-Marel JC (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol Fertil Soils 33:152-156

    Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture. ASA Special publication No. 54, Madison, Wisconsin

    Google Scholar 

  • Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 117-131

    Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996a) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005-3010

    CAS  PubMed  Google Scholar 

  • Bianciotto V, Minerdi D, Perotto S, Bonfante P (1996b). Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123-131

    Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503-4509

    CAS  PubMed  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2001) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots. Mol Plant Microbe Interact 14:255-260

    CAS  PubMed  Google Scholar 

  • Boddey RM, Urquiaga S, Reis V, Döbereiner J (1991). Biological nitrogen fixation associ-ated with sugar cane. Plant Soil 137:111-117

    Google Scholar 

  • Bonfante P, Perotto S (2000) Outside and inside the roots: cell-to-cell interactions among arbuscular mycorrhizal fungi, bacteria and host plants. In: Podila GK, Douds DD Jr (eds) Current advances in mycorrhizae research. APS Press, St. Paul, MN, pp 141-155

    Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1-102

    Google Scholar 

  • Broek AV, Vanderleyden J (1995) Genetics of the Azospirillum-plant root association. Crit Rev Plant Sci 14:445-466

    Google Scholar 

  • Budi SW, Van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza develop-ment and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148-5150

    CAS  PubMed  Google Scholar 

  • Calvet C, Pera J, Barea JM (1993) Growth response of marigold (Tagetes erecta L. ) to inoc-ulation with Glomus mosseae, Trichoderma aureoviride and Phythium ultimum in a peat-perlite mixture. Plant Soil 148:1-6

    Google Scholar 

  • Calvet C, Camprubi A, Rodriguez-Kabana R (1996) Inclusion of arbuscular mycorrhizal fungi in alginate films for experimental studies and plant inoculation. Hortscience 31:285

    Google Scholar 

  • Chanway CP (1996) Endophytes: they’re not just fungi! Can J Bot 74:321-322

    Google Scholar 

  • Chin-A-Woeng TFC, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001) Introduc-tion of the phzH gene of Pseudomonas chlororaphis PCL 1391 extends the range of biocontrol ability of phenazine-1 carboxylic acid producing Pseudomonas. Mol Plant-Microbe Interact 14:1006-1015

    CAS  PubMed  Google Scholar 

  • Christensen H, Jakobsen I (1993) Reduction of bacterial growth by a vesicular-arbuscu-lar mycorrhizal fungus in the rhizosphere of cucumber (Cucunis sativus L). Biol Fer-til Soils 15:253-258

    Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259-265

    Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim DS (1995) Molecular mechanisms of defense by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197-4201

    CAS  PubMed  Google Scholar 

  • Cordier C, Lemoine MC, Lemanceau P, Gianinazzi-Pearson V, Gianinazzi S (1999) The beneficial rhizosphere: a necessary strategy for microplant production. Acta Hortic 530:259-265

    Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol Ecol 36: 203-209

    CAS  PubMed  Google Scholar 

  • Defago G, Keel C (1995) Pseudomonads as biocontrol agents of diseases caused by soil-borne pathogens In: Hokkanen HMT, Lynch JM (eds) Benefits and risks of introduc-ing biocontrol agents. University Press, Cambridge

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Browk A, Vanderleyden J (1999) Phy-tostimulatory effect Azospirillum brasilense strains and auxins on wheat. Plant Soil 212:155-164

    CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre JF, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Response of agronomically important crops to inoculation with Azospirillum. Aust J Plant Physiol 28:1-9

    Google Scholar 

  • Duijff BJ, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outer mem-brane lipopolysaccharides in the endophytic root colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol 135:325-334

    CAS  Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of sys-temic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol. 104:903-910

    Google Scholar 

  • Dumas-Gaudot E, Gollotte A, Cordier C, Gianinazzi S, Gianinazzi-Pearson V (2000) Mod-ulation of host defence systems In: Kapulnick Y, Douds Jr DD (eds) Arbuscular myc-orrhizas: physiology and functions. Kluwer, Dordrecht, pp 121-140

    Google Scholar 

  • Edwards SG, Young JPW, Fitter AH (1998) Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol Lett 116:297-303

    Google Scholar 

  • Ferrol N, Barea JM, Azcón-Aguilar C (2000) The plasma membrane H+-ATPase genes family in the arbuscular mycorrhizal fungus Glomus mosseae. Curr Genet 37:112-118

    CAS  PubMed  Google Scholar 

  • Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1-12

    Google Scholar 

  • Fitter AH, Garbaye J (1994). Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159: 123-132

    Google Scholar 

  • Franken P, Requena N (2001) Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. New Phytol 150:517-523

    CAS  Google Scholar 

  • Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic finger-printing of fluorescent Pseudomonads associated with the Douglas Fir-Laccaria bio-color mycorrhizosphere. Appl Environ Microbiol 63:1852-1860

    CAS  PubMed  Google Scholar 

  • Galleguillos C, Aguirre C, Barea JM, Azcón R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57-63

    CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: A new dimension to the mycorrhizal symbiosis. New Phytol 128:197-210

    Google Scholar 

  • Germida JJ, Walley FL (1996) Plant growth-promoting rhizobacteria alter rooting pat-terns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol Fertil Soils 23:113-120

    CAS  Google Scholar 

  • Gianinazzi S, Schüepp H (1994) Impact of arbuscular mycorrhizas on sustainable agri-culture and natural ecosystems. ALS, Birkhäuser, Basel

    Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Trouvelot A (1990) Potentialities and procedures for the use of endomycorrhizas with special emphasis on high value crops. In: Whipps JM, Lumsden B (eds) Biotechnology of fungi for improving plant growth. Cambridge University Press, Cambridge, pp 41-54

    Google Scholar 

  • Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular myc-orrhizal fungi. New Phytol 133:45-57

    Google Scholar 

  • Giovannetti M (2000) Spore germination and pre-symbiotic mycelial growth In: Kapul-nick Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer, Dordrecht, pp 47-68

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Micro-biol 41:109-117

    CAS  Google Scholar 

  • Goicoechea N, Antolín MC, Sánchez-Díaz M (1997) Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant Soil 192:261-268

    CAS  Google Scholar 

  • Goicoechea N, Szalai G, Antolín MC, Sánchez-Díaz M, Paldi E (1998) Influence of arbus-cular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol 153:706-711

    CAS  Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organ-isms In: Kapulnick Y, Douds Jr DD (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer, Dordrecht, pp 239-262

    Google Scholar 

  • Gryndler M, Hrselova H (1998) Effect of diazotrophic bacteria isolated from a mycelium of arbuscular mycorrhizal fungi on colonization of maize roots by Glomus fistulosum. Biol Plant 41:617-621

    Google Scholar 

  • Gryndler M, Hrselová H, Stríteská D (2000) Effect of soil bacteria on growth of hyphae of the arbuscular mycorrhizal (AM) fungus Glomus claroideum. Folia Microbiol 45:545-551

    CAS  Google Scholar 

  • Haas D, Keel C, Laville J, Maurhofer M, Oberliansli T, Schnider U, Voisard C, Wüthrich B, Defago G. (1991) Secondary metabolites of Pseudomonas fluorescens strain CHA0 involved in the suppression of root diseases. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 450-456

    Google Scholar 

  • Halverson LJ, Handelsman J (1991) Enhancement of soybean nodulation by Bacillus ceresus UW95 in the field and in a growth chambers. Appl Environ Microbiol 57:2767-2770

    CAS  PubMed  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    CAS  PubMed  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Boden-bakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirtsch Ges 98:59-78

    Google Scholar 

  • Jeffries P (1997) Mycoparasitism. In: Wicklow DT, Södertröm BE (eds) The Mycota IV. Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 149-164

    Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza - a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota. vol. IX. Fungal Associations. Springer, Berlin Heidelberg New York, pp 95-113

    Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Vorsand C, Laville J, Burger U, Wirthuer P, Hass D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHAO: Importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4-13

    CAS  Google Scholar 

  • Kennedy AC (1998) The rhizosphere and spermosphere In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Pren-tice Hall, Upper Saddle River, New Jersey, pp 389-407

    Google Scholar 

  • Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricul-tural soils. Plant Soil 170:75-86

    CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79-87

    CAS  Google Scholar 

  • Kjoller R, Rosendahl S (2000) Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single stranded conformation polymorphism). Plant Soil 226:189-196

    CAS  Google Scholar 

  • Kloepper JW (1994) Plant growth-promoting rhizobacteria (other systems). In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111-118

    Google Scholar 

  • Kloepper JW (1996) Host specificity in microbe-microbe interactions. BioScience 46:406-409

    Google Scholar 

  • Kloepper JW, Zablotowick RM, Tipping EM, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister DL, Cregan PB (eds) The rhi-zosphere and plant growth. Kluwer, Dordrecht, pp 315-326

    Google Scholar 

  • Klyuchnikov AA, Kozhevin PA (1990). Dynamics of Pseudomonas fluorescens and Azospirillum brasiliense populations in the formation of vesicular arbuscular mycor-rhiza. Microbiologia 59:651-655

    Google Scholar 

  • Kozdrój J, Elsas JD van (2000) Application of polymerase chain reaction-denaturing gradient gel electrophoresis for comparison of direct and indirect extraction methods of soil DNA used for microbial community fingerprinting. Biol Fertil Soils 31:372-378

    Google Scholar 

  • Lagopodi AL, Ram AFJ, Lamers GEM, Punt PJ, Van den Hondel CAMJJ, Lugtenberg BJJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant-Microbe Interact 15:172-179

    CAS  PubMed  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid, a rec-iprocal signalling molecule in bacteria-plant interactions. Trends Microbiol 8:298-300

    CAS  PubMed  Google Scholar 

  • Lemanceau P, Alabouvette C (1993). Suppression of fusarium-wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Sci Technol 3:219-234

    Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora. The mycorrhizosphere effects. Phytopathology 78:366-371

    Google Scholar 

  • Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Spec, Madison, Wisconsin, pp 45-70

    Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St Paul, pp 1-26

    Google Scholar 

  • Linderman RG (2000) Effects of mycorrhizas on plant tolerance to diseases. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dor-drecht, pp 345-365

    Google Scholar 

  • Lovato PE, Schüepp H, Trouvelot A, Gianinazzi S (1995) Application of arbuscular myc-orrhizal fungi (AMF) in orchard and ornamental plants. In: Varma A, Hock B (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 521-559

    Google Scholar 

  • Lugtenberg BJJ, Weger de LA, Bennett JW (1991) Microbial stimulation of plant growth and protection from disease. Curr Opin Microbiol 2:457-464

    CAS  Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizos-phere colonization by bacteria. Annu Rev Phytopathol 39:461-490

    CAS  PubMed  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley, New York, p 462

    Google Scholar 

  • Marschner P, Crowley DE (1996a) Root colonization of mycorrhizal and nonmycorrhizal pepper (Capsicum annuum) by Pseudomonas fluorescens 2-79RL. New Phytol 134:115-122

    Google Scholar 

  • Marschner P, Crowley DE (1996b) Physiological activity of a bioluminescent Pseudomonas fluorescens (strain 2-79) in the rhizosphere of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L). Soil Biol Biochem 28:869-876

    CAS  Google Scholar 

  • Miller RM, Jastrow JD (1994) Vesicular-arbuscular mycorrhizae and biogeochemical cycling. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, MN, pp 189-212

    Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer, Dor-drecht, pp 3-18

    Google Scholar 

  • Moenne-Loccos Y, Tichy HV, O’Donnell A, Simon R, O’Gara F (2001) Impact of 2, 4-diacetylphloroglucinol-producing biocontrol strain Pseudomonas fluorescens F113 on intraspecific diver of resident culturable fluorescent pseudomonads associate with the roots of field-grown sugar beet seedlings. Appl Environ Microbiol 67:3418-3425

    Google Scholar 

  • Mohammad A, Khan AG, Kuek C (2000) Improved aeroponic culture of inocula of arbus-cular mycorrhizal fungi. Mycorrhiza 9:337-339

    Google Scholar 

  • Monzón A, Azcón R (1996) Relevance of mycorrhizal fungal origin and host plant geno-type to inducing growth and nutrient uptake in Medicago species. Agric Ecosyst Env-iron 60:9-15

    Google Scholar 

  • Morton J. B. (2000) Evolution of endophytism in arbuscular mycorrhizal fungi of Gloma-les. In: Bacon CW, White Jr JE (eds) Microbial endophytes. Marcel Dekker, New York, pp 121-140

    Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on con-cordant molecular and morphological characters. Mycologia 93:181-195

    Google Scholar 

  • Nehl DB, Allen SJ, Brown JF (1996) Deleterious rhizosphere bacteria: an integrating per-spective. Appl Soil Ecol 5:1-20

    Google Scholar 

  • O’Gara F, Dowling DN, Boesten B (1994) Molecular ecology of rhizosphere microorgan-isms. VCH, Weinheim, p 173

    Google Scholar 

  • Okon Y (1994) Azospirillum/Plant associations. CRC Press, Boca Raton, p 175

    Google Scholar 

  • Probanza A, Lucas García JA, Ruiz Palomino M, Ramos B, Gutiérrez Mañero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumillus CECT 5105). Appl Soil Ecol 20:75-84

    Google Scholar 

  • Puppi G, Azcón R, Höflich G (1994) Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. ALS, Birkhäuser, Basel, pp 201-215

    Google Scholar 

  • Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113-122

    Google Scholar 

  • Redecker D, Thierfelder H, Walker C, Werner D (1997) Restriction analysis of PCR-amplified internal transcribed spacers of ribosomal DNA as a tool for species identi-fication in different genera of the order Glomales. Appl Environ Microbiol 63:1756-1761

    CAS  PubMed  Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 14:276-284

    CAS  PubMed  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth- pro-moting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in Mediterranean semi-arid ecosystems. New Phytol 136:667-677

    Google Scholar 

  • Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified. Appl Environ Microbiol 67:495-498

    CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Azcón R (1993) Specificity and functional compatibility of VA mycor-rhizal endophytes in association with Bradyrhizobium strains in Cicer arietinum. Symbiosis 15:217-226

    Google Scholar 

  • Ruiz-Lozano JM, Bonfante P (2000) A Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacB gene, which is involved in host cell colonization by bacteria. Microbial Ecol 39:137-144

    CAS  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcón R (2001) Arbuscular mycorrhizal symbio-sis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493-502

    CAS  Google Scholar 

  • Sanders IR, Clapp JP, Wiemken A (1996) The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems - A key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol 133:123-134

    Google Scholar 

  • Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Höflich G, Hartmann A (1997) Root colonization of different plants by plant-growth-promoting Rhizobium legumi-nosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63:2038-2046

    CAS  PubMed  Google Scholar 

  • Schübler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413-1421

    Google Scholar 

  • Siciliano SD, Germida JJ (1998) BIOLOG analysis and fatty acid methyl ester profiles indicate that pseudomonad inoculants that promote phytoremediation alter the root-associated microbial community of Bromus biebersteinii. Soil Biol Biochem 30:1717-1723

    CAS  Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993). Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67-69

    Google Scholar 

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promot-ing Pseudomonas bacteria. Mol Plant-Microbe Interact 9:600-607

    CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London Smith SE, Gianinazzi-Pearson V, Koide R, Cairney JWG (1994) Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. In: Robson AD, Abbott LK, Malajczuk N (eds) Management of mycorrhizas in agri-culture, horticulture and forestry. Kluwer, Dordrecht, pp 103-113

    Google Scholar 

  • Staley TW, Lawrence EG, Nance EL (1992) Influence of a plant growth-promoting pseudomonad and vesicular-arbuscular mycorrhizal fungus on alfalfa and birdsfoot trefoil growth and nodulation. Biol Fertil Soils 14:175-180

    Google Scholar 

  • Sturz AV Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183-190

    Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1-30

    Google Scholar 

  • Sylvia DM (1998) Mycorrhizal symbioses. In: Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, New Jersey, pp 408-426

    Google Scholar 

  • Thomashow LS, Weller DM (1995) Current concepts in the use of introduced bacteria for biological control: mechanisms and antifungal metabolites. In: Stacey G, Keen N (eds) Plant-microbe interactions. Chapman and Hall, New York, pp 187-235

    Google Scholar 

  • Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular mycorrhizal development by inoculation with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63: 4408-4412

    CAS  PubMed  Google Scholar 

  • Toro M, Azcón R, Barea JM (1998) The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Med-icago sativa. New Phytol 138:265-273

    CAS  Google Scholar 

  • Tuinen D van, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characteriza-tion of root colonization profiles by a microcosm community of arbuscular mycor-rhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879-887

    PubMed  Google Scholar 

  • Valdenegro M, Barea JM, Azcón R (2001) Influence of arbuscular-mycorrhizal fungi, Rhi-zobium meliloti strains and PGPR inoculation on the growth of Medicago arborea used as model legume for re-vegetation and biological reactivation in a semi-arid Mediterranean area. Plant Growth Regul 34:233-240

    CAS  Google Scholar 

  • Van Bastelaere E, Lambrecht M, Vermeiren H, Keijers V, de Wilde P, Proost P, Van Dom-melen A, Varderleyden J (1999) Characterization of a sugar-binding protein from Azospirillum brasilense mediating chemotaxis to and uptake of sugars. Mol Microbiol 32:703-714

    PubMed  Google Scholar 

  • Van de Broek A, Lambrecht M, Vanderleyden J (1999) Auxins upregulate expression of the indole-3-pyruvate decaboxylase gene from Azospirillum brasilense. J Bacteriol 181:1338-1342

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizos-phere bacteria. Annu Rev Phytopathol 36:453-483

    PubMed  Google Scholar 

  • Varma A, Schüepp H (1995) Mycorrhization of the commercially important microprop-agated plants. Crit Rev Biotechnol 15:313-328

    Google Scholar 

  • Varma A, Verma S, Sudha, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741-2744

    CAS  PubMed  Google Scholar 

  • Vázquez MM, Cesar S, Azcón R, Barea JM (2000) Interactions between arbuscular myc-orrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Tricho-derma) and their effects on microbial population and enzyme activities in the rhi-zosphere of maize plants. Appl Soil Ecol 15:261-272

    Google Scholar 

  • Vierheilig H, Piché Y (2002) Signalling in arbuscular mycorrhiza: facts and hypotheses. In: Buslig B, Manthey J (eds) Flavonoids in cell functions. Kluwer Academic/Plenum Publishers, New York, pp 23-29

    Google Scholar 

  • Vestberg M, Estaún V (1994) Micropropagated plants, an opportunity to positively man-age mycorrhizal activities. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 217-226

    Google Scholar 

  • Volpin H, Kapulnik Y (1994) Interaction of Azospirillum with beneficial soil microor-ganisms. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111-118

    Google Scholar 

  • Vosátka M (1996) Soil bacteria - a component of plant, soil and arbuscular mycorrhizal fungal interactions. In: Azcon-Aguilar C, Barea JM (Eds) Mycorrhizas in integrated systems - from genes to plant development. (pp 613-618). European Commission Report EUR 16728, Brussels, Luxembourg

    Google Scholar 

  • Vosátka M, Gryndler M (1999) Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245-251

    Google Scholar 

  • Waschkies C, Schropp A, Marschner H (1994). Relations between grapevine replant dis-ease and root colonization of grapevine (Vitis sp. ) by fluorescent pseudomonads and endomycorrhizal fungi. Plant Soil 162:219-227

    Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microor-ganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms biotechnology and the release of GMOs. VCH, Weinheim, pp 1-18

    Google Scholar 

  • Werner D (1998) Organic signals between plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interfaces. Marcel Dekker, New York

    Google Scholar 

  • Werner D, Barea J-M, Brewin NJ, Cooper P, Katinakis P, Lindström K, O’Gara F, Spaink HP, Truchet G, Müller P (2002) Symbiosis and defence in the interaction of plants with microorganisms. Symbiosis 32:83-104

    Google Scholar 

  • Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubiliz-ing fungi. Adv Agron 69:99-151

    CAS  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Envi-ron Microbiol 68:2198-2208

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barea, JM., Azcón, R., Azcón-Aguilar, C. (2008). Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria. In: Varma, A., Abbott, L., Werner, D., Hampp, R. (eds) Plant Surface Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74051-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74051-3_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74050-6

  • Online ISBN: 978-3-540-74051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics