Skip to main content

Interactions of Microbes with Genetically Modified Plants

  • Chapter
Plant Surface Microbiology

The introduction of molecular biological methods into plant breeding has offered the possibility to construct genetically modified plants (GMPs) with new qualities. Major goals of genetic engineering are the improvement of product quality as well as the enhancement of resistance or tolerance to pathogen infections, herbicides and abiotic stress factors.

Attempts to improve the quality of agricultural products include the manipulation of the softening of fruits like strawberry (Jimenez-Bermudez et al. 2002) and tomato (Quiroga and Fraschina 1997) in order to allow longer storage after harvesting, the modification of oil composition of oilseed crops (Thelen and Ohlrogge 2002), or the elevation of the provitamin A content of rice (Ye et al. 2000) and tomato (Romer et al. 2000). Even in forestry, increased wood production and quality are of great commercial interest (Mullin and Bertrand 1998). For example, the lignin content of transgenic aspen, in which the lignin biosynthesis pathway was downregulated by antisense inhibition, was greatly reduced (Hu et al. 1999), indicating that some technical limitations for the use of these fast growing trees for cellulose fiber production (e.g., in paper industry) might be reduced by genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Selected Reading

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology, vol 23. Academic Press, London, pp 25-73

    Google Scholar 

  • Ahrenholtz I, Harms K, de Vries J, Wackernagel W (2000) Increased killing of Bacillus subtilis on the hair roots of transgenic T4 lysozyme-producing potatoes. Appl Envi-ron Microbiol 66:1862-1865

    Article  CAS  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing alu-minium-induced mitochondrial manganese superoxide dismutase cDNA are resis-tant to aluminium. Plant Cell Environ 24:1269-1278

    Article  CAS  Google Scholar 

  • Bertolla F, Simonet P (1999) Horizontal gene transfers in the environment: natural trans-formation as a putative process for gene transfers between transgenic plants and microorganisms. Res Microbiol 150:375-384

    Article  CAS  PubMed  Google Scholar 

  • Bertolla F, Pepin R, Passelegue-Robe E, Paget E, Simkin A, Nesme X, Simonet P (2000) Plant genome complexity may be a factor limiting in situ the transfer of transgenic plant genes to the phytopathogen Ralstonia solanacearum. Appl Environ Microbiol 66:4161-4167

    Article  CAS  PubMed  Google Scholar 

  • Bothe H (1993) Metabolism of inorganic nitrogen compounds. Progress in Botany 54. Springer, Berlin Heidelberg New York, pp 201-217

    Google Scholar 

  • Bryngelsson T, Gustafsson M, Green B, Lind C (1988) Uptake of host DNA by the para-sitic fungus Plasmodiophora brassicae. Physiol Mol Plant Pathol 33:163-171

    Article  CAS  Google Scholar 

  • Buscot F, Munch JC, Charcosset JY, Gardes M, Nehls U, Hampp R (2000) Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the function-ing of these symbioses in ecosystems. FEMS Microbiol Rev 699:1-14

    Google Scholar 

  • de Vries J, Harms K, Broer I, Kriete G, Mahn A, Düring K, Wackernagel W (1999) The bac-teriolytic activity of transgenic potatoes expressing a chimeric T4 lysozyme gene and the effect of T4 lysozyme on soil- and phytopathogenic bacteria. Syst Appl Microbiol 22:280-286

    Google Scholar 

  • de Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacte-ria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol Lett 195: 211-215

    Article  PubMed  Google Scholar 

  • Diaz CL, Melchers LS, Hooykaas PJJ, Lugtenberg EJJ, Kijne JW (1989) Root lectin as a determinant of host plant specificity in the Rhizobium-legume symbiosis. Nature 338:579-581

    Article  CAS  Google Scholar 

  • Diaz CL, Spaink HP, Kijne JW (2000) Heterologous rhizobial lipochitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene. Mol Plant-Microbe Int 13:268-276

    Article  CAS  Google Scholar 

  • Di Giovanni GD, Wartrud LS, Seidler RJ, Widmer F (1999) Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fin-gerprinting and enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR). Microb Ecol 37:129-139

    Article  CAS  PubMed  Google Scholar 

  • Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL, Bucao LQ, Seidler RJ (1995) Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl Soil Ecol 2:111-124

    Article  Google Scholar 

  • Donegan KK, Schaller DL, Stone JK, Ganio LM, Reed G, Hamm PB, Seidler RJ (1996) Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var. tenebrionis endotoxin. Transgen Res 5:25-35

    Article  CAS  Google Scholar 

  • Donegan KK, Seidler RJ, Fieland VJ, Schaller DL, Palm CJ, Ganio LM, Cardwell DM, Stein-berger Y (1997) Decomposition of genetically engineered tobacco under field conditions: persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa, nematode and microarthropod populations. J Appl Ecol 34:767-777

    Article  Google Scholar 

  • Donegan KK, Seidler RJ, Doyle JD, Porteus LA, di Giovanni G, Widmers F, Wartrud LS (1999) A field study with genetically engineered alfalfa with recombinant Sinorhizo-nium meliloti: effects on the soil ecosystem. J Appl Ecol 36:920-936

    Article  Google Scholar 

  • Dröge M, Pühler A, Selbitschka W (1998) Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J Biotechnol 64:75-90

    Article  PubMed  Google Scholar 

  • Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol Ecol 38:1-9

    Article  CAS  Google Scholar 

  • Düring K, Porsch P, Fladung M, Lörz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3:587-598

    Article  Google Scholar 

  • Fladung M, Muhs H-J (2000) Field release with Populus tremula (rolC-gene) in Groß-hansdorf. In: Umweltbundesamt (ed) Release of transgenic trees - present achieve-ments, problems, future prospects. Humboldt-Universität, Berlin, pp 40-45

    Google Scholar 

  • Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimaeric gene constructs: transformation efficiency and molecular analysis. Transgen Res 6:111-121

    Article  CAS  Google Scholar 

  • Fladung M, Kaldorf M, Buscot F, Muhs H-J (2000) Untersuchungen zur Stabilität und Expressivität fremder Gene in Aspenklonen (Populus tremula und P. tremula x P. tremuloides) unter Freilandbedingungen. In: Schiemann J (ed) Biologische Sicher-heitsforschung bei Freilandversuchen mit transgenen Organismen und anbaubeglei-tendes Monitoring. BEO (Projektträger Biologie, Energie, Umwelt des BMBF), Braun-schweig-Jülich, Braunschweig, pp 77-83

    Google Scholar 

  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by trans-genic sugar beet DNA. Appl Environ Microbiol 64:1550-1554

    CAS  PubMed  Google Scholar 

  • Gebhard F, Smalla K (1999) Monitoring field release of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Micro-biol Ecol 28:261-272

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differen-tial activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609-613

    Article  CAS  PubMed  Google Scholar 

  • Glandorf DCM, Bakker PAHM, van Loon LC (1997) Influence of the production of antibacterial and antifungal proteins by transgenic plants on the saprophytic soil microflora. Acta Bot Neerl 46:85-104

    CAS  Google Scholar 

  • Griffiths BS, Geoghegan IE, Robertson WM (2000) Testing genetically engineered potato, producing the lectins GNA and Con A, on non-target soil organisms and processes. J Appl Ecol 37:159-170

    Article  Google Scholar 

  • Hampp R, Ecke M, Schaeffer C, Wallenda T, Wingler A, Kottke I, Sundberg B (1996) Axenic mycorrhization of wild type and transgenic hybrid aspen expressing T-DNA indoleacetic acid-biosynthetic genes. Tree 11:59-64

    Article  Google Scholar 

  • Hansen Jesse LC, Obrycki JJ (2000) Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologia 125:241-248

    Article  Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1992) Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can J Bot 70:2032-2040

    Article  Google Scholar 

  • Heuer H, Smalla K (1999) Bacterial phyllosphere communities of Solanum tuberosum L. and T4-lysozyme-producing transgenic variants. FEMS Microbiol Ecol 28:357-371

    Article  CAS  Google Scholar 

  • Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl Environ Microbiol 68: 1325-1335

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann T, Golz C, Schieder O (1994) Foreign DNA sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plants. Curr Genet 27:70-76

    Article  CAS  PubMed  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808-812

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Bermudez S, Redondo-Nevado J, Munoz-Blanco J, Caballero JL, Lopez-Aranda JM, Valpuesta V, Pliego-Alfaro F, Quesada MA, Mercado JA (2002) Manipulation of strawberry fruit softening by antisense expression of a pectate lyase gene. Plant Phys-iol 128:751-759

    Article  CAS  Google Scholar 

  • Kaldorf M, Buscot F, Fladung M, Muhs H-J (2001) Establishment of mycorrhizas on rolC-transgenic aspen in a field trial. Abstract of the conference “Molekularbiologie der Pilze”, Jena, 30. 9. -3. 10. 2002, pp 50

    Google Scholar 

  • Kaldorf M, Fladung M, Muhs H-J, Buscot F (2002) Mycorrhizal colonization of transgenic aspen in a field trial. Planta 214: 653-660

    Article  CAS  PubMed  Google Scholar 

  • Kottke I, Oberwinkler F (1986) Mycorrhiza of forest trees - structure and function. Tree 1:1-24

    Google Scholar 

  • Kottke I, Oberwinkler F (1987) The cellular structure of the Hartig net: coenocytic and transfer cell-like organization. Nord J Bot 7:85-95

    Article  Google Scholar 

  • Krishnapillai V (1996) Horizontal gene transfer. J Genet 75:219-232

    Article  Google Scholar 

  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch larvae. Nature 399:214

    Article  CAS  PubMed  Google Scholar 

  • Lottmann J, Berg G (2001) Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non-transgenic potato plants. Micro-biol Res 156:75-82

    Article  CAS  Google Scholar 

  • Lottmann J, Heuer H, Smalla K, Berg G (1999) Influence of transgenic T4-lysozyme-pro-ducing potato plants on potentially beneficial plant-associated bacteria. FEMS Micro-biol Ecol 29:365-377

    Article  CAS  Google Scholar 

  • Lottmann J, Heuer H, de Vries J, Mahn A, Düring K, Wackernagel W, Smalla K, Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of trans-genic potatoes and their effect on bacterial community. FEMS Microbiol Ecol 33:41-49

    Article  PubMed  Google Scholar 

  • Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32:241-247

    Article  CAS  Google Scholar 

  • Masoud SA, Zhu Q, Lamb C, Dixon RA (1996) Constitutive expression of an inducible b-1, 3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f. sp. medicagini, but does not reduce disease severity of chitin-containing fungi. Transgen Res 5:313-323

    Article  CAS  Google Scholar 

  • Morra MJ (1994) Assessing the impact of transgenic plant products on soil organisms. Mol Ecol 3:53-55

    Article  Google Scholar 

  • Mullin TJ, Bertrand S (1998) Environmental release of transgenic trees in Canada -potential benefits and assesment of biosafety. Forestry Chron 74:203-219

    Google Scholar 

  • Nehls U, Bock A, Ecke M, Hampp R (2001) Differential expression of the hexose-regu-lated fungal genes AmPAL and AmMst1 within Amanita/Populus ectomycorrhizas. New Phytol 150:583-589

    Article  CAS  Google Scholar 

  • Nielsen KM, Gebhard F, Smalla K, Bones AM, van Elsas JD (1997) Evaluation of possible horizontal gene transfer from transgenic plants to the soil bacterium Acinetobacter calcoaceticus BD413. Theor Appl Genet 95:815-821

    Article  CAS  Google Scholar 

  • Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria - a rare event? FEMS Microbiol Rev 22:79-103

    CAS  PubMed  Google Scholar 

  • Nielsen KM, van Elsas JD, Smalla K (2000) Transformation of Acinetobacter sp. strain BD413 (pFG4DnptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl Environ Microbiol 66:1237-1242

    Article  CAS  PubMed  Google Scholar 

  • Oger P, Mansouri H, Dessaux Y (2000) Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 9:881-890

    Article  CAS  PubMed  Google Scholar 

  • Owen MDK (2000) Current use of transgenic herbicide-resistant soybean and corn in the USA. Crop Prot 19:765-771

    Article  Google Scholar 

  • Perlak FJ, Oppenhuizen M, Gustafson K, Voth R, Sivasupraniam S, Heering D, Carey B, Ihrig RA, Roberts JK (2001) Development and commercial use of Bollgard® cotton in the USA - early promises versus today’s reality. Plant J 27:489-501

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Terry N, Sears T, van Dun K (1999) Enhanced drought resistance in fructan-producing sugar beet. Plant Physiol Bioch 37:313-317

    Article  CAS  Google Scholar 

  • Punja ZK (2001) Genetic engineering of plants to enhance resistance to fungal pathogens - a review of progress and future prospects. Can J Plant Pathol 23:216-235

    CAS  Google Scholar 

  • Quiroga GOS, Fraschina AA (1997) Evaluation of sensory attributes and biochemical parameters in transgenic tomato fruit with reduced polygalacturonase activity. Food Sci Technol Int 3:93-102

    Article  Google Scholar 

  • Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Ele-vation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666-669

    Article  CAS  PubMed  Google Scholar 

  • Saroha MK, Sridhar P, Malik VS (1998) Glyphosate-tolerant crops: genes and enzymes. J Plant Biochem Biotechnol 7:65-72

    CAS  Google Scholar 

  • Saxena D, Stotzky G (2001) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria, and fungi in soil. Soil Biol Biochem 33:1225-1230

    Article  CAS  Google Scholar 

  • Schlüter K, Fütterer J, Potrykus I (1995) Horizontal gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs - if at all - at an extremely low frequency. Biotech 13:1094-1098

    Article  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social con-sequences of the development of Bt transgenic plants. Annu Rev Entomol 47:845-881

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Theoret CM, de Freitas JR, Hucl PJ, Germida JJ (1998) Differences in the microbial communities associated with the roots of different cultivar of canola and wheat. Can J Microbiol 44:844-851

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Solomon-Blackburn RM, Barker H (2001) Breeding virus resistant potatoes (Solanum tuberosum): a review of traditional and molecular approaches. Heredity 86:17-35

    Article  CAS  PubMed  Google Scholar 

  • Staehelin C, Charon C, Boller T, Crespi M, Kondorosi A (2001) Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. Proc Natl Acad Sci USA 98:15366-15371

    Article  CAS  PubMed  Google Scholar 

  • Straubinger B, Straubinger E, Wirsel S, Turgeon G, Yoder O (1992) Versatile fungal trans-formation vectors carrying the selectable bar gene of Streptomyces hygroscopicus. Fungal Genet Newslet 39:82-83

    Google Scholar 

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12-21

    Article  CAS  PubMed  Google Scholar 

  • Tuominen H, Sitbon F, Jacobsson C, Sandberg G, Olsson O, Sundberg B (1995) Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobac-terium tumefaciens T-DNA indoleacetic acid-biosynthetic genes. Plant Physiol 109:1179-1189

    CAS  PubMed  Google Scholar 

  • Vance CP, Graham PH (1995) Nitrogen fixation in agriculture: application and perspec-tives. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fix-ation: fundamentals and applications. Kluwer, St. Petersburg, pp 77-86

    Google Scholar 

  • van Rhijn P, Fujishige NA, Lim PO, Hirsch AM (2001) Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium legumi-nosarum biovar viciae. Plant Physiol 126:133-144

    Article  PubMed  Google Scholar 

  • Vierheilig H, Alt M, Neuhaus J-M, Boller T, Wiemken A (1993) Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of Nicotiana tabacum chiti-nase, by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glo-mus mosseae. Mol Plant-Microbe Int 6:261-264

    CAS  Google Scholar 

  • Vierheilig H, Alt M, Lange J, Gut-Rella M, Wiemken A, Boller T (1995) Colonization of transgenic tobacco constitutively expressing pathogenesis-related proteins by the vesicular arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 61:3031-3034

    CAS  PubMed  Google Scholar 

  • Warwick SI, Beckie HJ, Small E (1999) Transgenic crops: new weed problems for Canada? Phytoprotection 80:71-84

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315-322

    Google Scholar 

  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engi-neered plants. Science 290:2088-2093

    Article  CAS  PubMed  Google Scholar 

  • Wöstemeyer J, Wöstemeyer A, Voigt K (1997) Horizontal gene transfer in the rhizos-phere: a curiosity or a driving force in evolution? Adv Bot Res 24:399-429

    Article  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endo-sperm. Science 287:303-305

    Article  CAS  PubMed  Google Scholar 

  • Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765-768

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaldorf, M., Zhang, C., Nehls, U., Hampp, R., Buscot, F. (2008). Interactions of Microbes with Genetically Modified Plants. In: Varma, A., Abbott, L., Werner, D., Hampp, R. (eds) Plant Surface Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74051-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74051-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74050-6

  • Online ISBN: 978-3-540-74051-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics