Skip to main content

Brucellosis affects millions of animals and humans world-wide; in humans, over 500,000 new cases are reported annually. Although some vaccines are available for its prevention in animals, none exist for humans. The causative agent is the facultative intracellular bacterial pathogen belonging to the genus Brucella and is transmitted from animals to humans; infected animals experience abortion and humans undulant fever. Brucella spp. belong to the order Rhizobiales within the class alpha-Proteobacteria. This places them in a group of bacteria noted for their abilities to live in soil (e.g. Ochrobactrum) or form close associations with their host and result in either a disease (e.g. phytopathogenic Agrobacterium) or non-disease state (symbiotic Rhizobium). The scientists contributing to the chapter have a vast array of experience in studying this intracellular bacterial pathogen. The topics covered include disease history, vaccines and zoonotic implications, taxonomy, diagnostic and population dynamics, comparative and functional genomics, and host pathogen interactions related to the Brucella spp. In all, the chapter is a comprehensive look at the Brucella and the means by which we are trying to minimize the negative impacts it has on the animal kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams L (2002) The pathology of brucellosis reflects the out come of the battle between the host genome and the Bru cella genome. Vet Microbiol 90:553–561

    PubMed  CAS  Google Scholar 

  • Al Dahouk S, Tomaso H, Prenger-Berninghoff E, Spletts-toesser WD, Scholz HC, Neubauer H (2005) Identification of Brucella species and biotypes using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Crit Rev Microbiol 3:191–196

    Google Scholar 

  • Al Dahouk S, Nockler K, Scholz HC, Tomaso H, Bogumil R, Neubauer H (2006) Immunoproteomic characterization of Brucella abortus 1119–3 preparations used for the serodi agnosis of Brucella infections. J Immunol Meth 309:34–47

    CAS  Google Scholar 

  • Allardet-Servent A, Bourg G, Ramuz M, Pages M, Bellis M, Roizes G (1988) DNA polymorphism in strains of the genus Brucella. J Bacteriol 170:4603–4607

    PubMed  CAS  Google Scholar 

  • Allardet-Servent A, Carles-Nurit MJ, Bourg G, Michaux S, Ramuz M (1991) Physical map of the Brucella melitensis 16M chromosome. J Bacteriol 173:2219–2224

    PubMed  CAS  Google Scholar 

  • Allen CA, Adams LG, Ficht TA (1998) Transposon-derived Brucella abortus rough mutants are attenuated and exhibit reduced intracellular survival. Infect Immun 66: 1008–1016

    PubMed  CAS  Google Scholar 

  • Alp E, Koc RK, Durak AC, Yildiz O, Aygen B, Sumerkan B, Doganay M (2006) Doxycycline plus streptomycin ver sus ciprofloxacin plus rifampicin in spinal brucellosis. BMC Infect Dis 6:72

    PubMed  Google Scholar 

  • Altenbern RA (1973) Chromosomal mapping of Brucella abor tus, strain 19. Can J Microbiol 19:109–112

    PubMed  CAS  Google Scholar 

  • Alton GG, Jones LM, Pietz DE (1975) Laboratory Techniques in Brucellosis. Monograph series. World Health Organiza tion, Geneva, Switzerland

    Google Scholar 

  • Alton GG, Jones LM, Angus RD, Verger JM (1988) Techniques for the brucellosis laboratory. INRA ISBN 2-7380-0042-8

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Andrutis KA, Fox JG, Schauer DB, Marini RP, Murphy JC, Ya n L, Solnick JV (1995) Inability of an isogenic urease negative mutant stain of Helicobacter mustelae to colonize the ferret stomach. Infect Immun 63:3722–3725

    PubMed  CAS  Google Scholar 

  • Anonymous (1988) International Committee on Systematic Bacteriology subcommittee on the Taxonomy of Brucella. Report of the meeting, 5 Sept 1986, Manchester, England. Int J Syst Bacteriol 38:450–452

    Google Scholar 

  • Appella E, Arnott D, Sakaguchi K, Wirth PJ (2000) Proteome mapping by two-dimensional polyacrylamide gel electro phoresis in combination with mass spectrometric protein sequence analysis. EXS 88:1–27

    PubMed  CAS  Google Scholar 

  • Ason B, Reznikoff WS (2004) DNA sequence bias during Tn5 transposition. J Mol Biol 335:1213–1225

    PubMed  CAS  Google Scholar 

  • Avery OT, MacCleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. I. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumo coccus type III. J Exp Med 79:137

    CAS  Google Scholar 

  • Baldwin CL, Winter AJ (1994) Macrophages and Brucella. Immu nol Ser 60:363–380

    CAS  Google Scholar 

  • Banai M (2002) Control of small ruminant brucellosis by use of Brucella melitensis rev.1 vaccine: Laboratory aspects and field observations. Vet Microbiol 90:497–519

    PubMed  CAS  Google Scholar 

  • Bandara B, Contreras A, Contreras-Rodriguez A, Martins AM, Dobrean V, Poff-Reichow S, Rajasekaran P, Sriranganathan N, Schurig GG, Boyle SM (2007) Brucella suis urease encoded by ure-1 but not ure-2 is necessary for infection of BALB/c mice by gavage. BMC Microbiol 7:57–70

    PubMed  Google Scholar 

  • Bang B (1906) Infectious abortion in cattle. J Comp Pathol 77:191, A202

    Google Scholar 

  • Bang B (1933) Bernhard Bang. Am J Public Health Nations Health 23:48, A49

    Google Scholar 

  • Batut J, Andersson SG, O'Callaghan D (2004) The evolution of chronic infection strategies in the[alpha]-proteobacteria. Nat Rev Microbiol 2:933–945

    PubMed  CAS  Google Scholar 

  • Bellaire BH, Elzer PH, Baldwin CL, Roop RM (2003) Produc tion of the siderophore 2,3-dihydroxybenzoic acid is required for wild-type growth of Brucella abortus in the presence of erythritol under low-iron conditions in vitro. Infect Immun 71:2927–2832

    PubMed  CAS  Google Scholar 

  • Bellefontaine AF, Pierreux CE, Mertens P, Vandenhaute J, Letesson JJ, De Bolle X (2002) Plasticity of a transcrip tional regulation network among alpha-proteobacteria is supported by the identification of ctrA targets in Brucella abortus. Mol Microbiol 43:945–960

    PubMed  CAS  Google Scholar 

  • Belzer C, Stoof J, Beckwith CS, Kuipers EJ, Kusters JG, van Vliet AH (2005) Differential regulation of urease activity in Heli cobacter hepaticus and Helicobacter pylori. Microbiology 151:3989–3995

    PubMed  CAS  Google Scholar 

  • Benson M, Breitling R (2006) Network theory to understand micro array studies of complex diseases. Curr Mol Med 6:695–701

    PubMed  CAS  Google Scholar 

  • Binnicker MJ, Williams RD, Apicella MA (2003) Infection of human urethral epithelium with Neisseria gonorrhoeae elicits an upregulation of host anti-apoptotic factors and protects cells from staurosporine-induced apoptosis. Cell Microbiol 5:549–560

    PubMed  CAS  Google Scholar 

  • Binns AN, Beaupre CE, Dale EM (1995) Inhibition of virB-mediated transfer of diverse substrates from Agrobacte rium tumefaciens by the incq plasmid rsf1010. J Bacteriol 177:4890–4899

    PubMed  CAS  Google Scholar 

  • Birney E, Clamp M, Durbin R (2004) Genewise and genom ewise. Genom Res 14:988–995

    CAS  Google Scholar 

  • Blankenship RM, Sanford JP (1975) Brucella canis. A cause of undulant fever. Am J Med 59:424–426

    CAS  Google Scholar 

  • Blueggel M, Chamrad D, Meyer HE (2004) Bioinformatics in proteomics. Curr Pharm Biotechnol 5:79–88

    PubMed  CAS  Google Scholar 

  • Boschiroli ML, Foulongne V, O'Callaghan D (2001) Brucellosis: A worldwide zoonosis. Curr Opin Microbiol 4:58–64

    PubMed  CAS  Google Scholar 

  • Boschiroli ML, Ouahrani-Bettache S, Foulongne V, Michaux-Charachon S, Bourg G, Allardet-Servent A, Cazevieille C, Lavigne JP, Liautard JP, Ramuz M, O'Callaghan D (2002a) The Brucella suis virB operon is induced intracellularly in macrophages. Proc Natl Acad Sci USA 99:1544–1549

    CAS  Google Scholar 

  • Boschiroli ML, Ouahrani-Bettache S, Foulongne V, Michaux-Charachon S, Bourg G, Allardet-Servent A, Cazevieille C, Lavigne J P, Liautard J P, Ramuz M, O'Callaghan D (2002b) Type IV secretion and Brucella virulence. Ve t Microbiol 90:341–348

    CAS  Google Scholar 

  • Bossi P, Tegnell A, Baka A, Van Loock F, Hendriks J, Werner A, Maidhof H, Gouvras G, Task Force on Biological and Chemical Agent Threats, Public Health Directorate, Euro pean Commission, Luxembourg (2004) Bichat guidelines for the clinical management of brucellosis and bioterror ism-related brucellosis. Euro Surveill 9:E15–E16

    PubMed  Google Scholar 

  • Bourg G, O'Callaghan D, Boschiroli ML (2007) The genomic structure of Brucella strains isolated from marine mam mals gives clues to evolutionary history within the genus. Ve t Microbiol 125:375–380

    CAS  Google Scholar 

  • Boussau B, Karlberg EO, Frank AC, Leqault BA, Andersson SG (2004) Computational inference of scenarios for {alpha} proteobacterial genome evolution. Proc Natl Acad Sci USA 101:9722–9727

    PubMed  CAS  Google Scholar 

  • Brew SD, Perrett LL, Stack JA, MacMillan A P, Staunton NJ (1999) Human exposure to Brucella recovered from a sea mammal. Vet Rec 144:483

    PubMed  CAS  Google Scholar 

  • Bricker BJ (2002) PCR as a diagnostic tool for brucellosis. Vet Microbiol 90:435–446

    PubMed  CAS  Google Scholar 

  • Bricker BJ (2004) Molecular diagnostics of animal brucellosis: A review of PCR-based assays and approaches. Lopez-Goni I, Moriyon I (eds) Brucella: Molecular and Cellular Biology. Horizon Bioscience, Wymondham, pp 25–51

    Google Scholar 

  • Bricker BJ, Ewalt DR (2005) Evaluation of the hoof-print assay for typing Brucella abortus strains isolated from cattle in the united states: Results with four performance criteria. BMC Microbiol 5:37

    PubMed  Google Scholar 

  • Bricker BJ, Halling S (1994) Differentiation of Brucella abor tus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR. J Clin Microbiol 32:2660–2666

    PubMed  CAS  Google Scholar 

  • Bricker BJ, Ewalt DR, MacMillan AP, Foster G, Brew S (2000) Molecular characterization of Brucella strains isolated from marine mammals. J Clin Microbiol 38:1258–1262

    PubMed  CAS  Google Scholar 

  • Bricker BJ, Ewalt DR, Halling SM (2003) Brucella ‘hoof-prints’: Strain typing by multi-locus analysis of variable number tandem repeats (VNTRS). BMC Microbiol 3:15

    PubMed  Google Scholar 

  • Brodie R, Smith AJ, Roper RL, Tcherepanov V, Upton C (2004) Base-by-base: Single nucleotide-level analysis of whole viral genome alignments. BMC Bioinform 5:96

    Google Scholar 

  • Brooks-Worrell BM, Splitter GA (1992) Antigens of Brucella abortus S19 immunodominant for bovine lymphocytes as identified by one- and two-dimensional cellular immuno blotting. Infect Immun 60:2459–2464

    PubMed  CAS  Google Scholar 

  • Brown GM (1977) The history of the brucellosis eradication program in the United States. Ann Sclavo 19:20–34

    PubMed  CAS  Google Scholar 

  • Buck JM (1930) Studies of vaccination during calfhood to pre vent bovine infectious abortion. J Agric Res 41:667

    Google Scholar 

  • Buddle MB (1956) Studies on Brucella ovis (n.sp.), a cause of genital disease of sheep in New Zealand and Australia. J Hyg (Lond) 54:351–364

    CAS  Google Scholar 

  • Campos MA, Rosinha GM, Almeida IC, Salqueiro XS, Jarvis BW, Splitter GA, Qureshi N, Bruna-Romero O, Gazzinelli RT, Oliveira SC (2004) Role of toll-like receptor 4 in induc tion of cell-mediated immunity and resistance to Brucella abortus infection in mice. Infect Immun 72:176–186

    PubMed  CAS  Google Scholar 

  • Capasso L (2002) Bacteria in two-millennia-old cheese, and related epizoonoses in roman populations. J Infect 45: 122–127

    PubMed  CAS  Google Scholar 

  • Cardoso PG, Macedo GC, Azevedo V, Olicveira SC (2006) Brucella spp noncanonical lps: Structure, biosynthesis, and interac tion with host immune system. Microb Cell Fact 5:13

    PubMed  Google Scholar 

  • Carmichael LE, Bruner DW (1968) Characteristics of a newly-recognized species of Brucella responsible for infectious canine abortions. Cornell Vet 48:579–592

    PubMed  CAS  Google Scholar 

  • Cascales E, Christie PJ (2004) Agrobacterium virB10, an ATP energy sensor required for type IV secretion. Proc Natl Acad Sci USA 101:1722 8–17233

    PubMed  CAS  Google Scholar 

  • Celli J (2006) Surviving inside a macrophage: The many ways of Brucella. Res Microbiol 157:93–98

    PubMed  CAS  Google Scholar 

  • Celli J, de Chastellier C, Franchini DM, Pizarro-Cerda J, Moreno E, Gorvel JP (2003) Brucella evades macrophage killing via virB-dependent sustained interactions with the endoplasmic reticulum. J Exp Med 198:545–556

    PubMed  CAS  Google Scholar 

  • Chain PS, Comerci DJ, Tolmasky ME, Larimer FW, Malfatti SA, Verqez LM, Aquero F, Land ML, Ugalde RA, Garcia E (2005) Whole-genome analyses of speciation events in pathogenic Brucellae. Infect Immun 73:8353–8361

    PubMed  CAS  Google Scholar 

  • Cheers C (1984) Pathogenesis and cellular immunity in experi mental murine brucellosis. Dev Biol Stand 56:237–246

    PubMed  CAS  Google Scholar 

  • Chiang SL, Rubin EJ (2002) Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 296:179–185

    PubMed  CAS  Google Scholar 

  • Choi KH, Schweizer HP (2005) An improved method for rapid generation of unmarked Pseudomonas aeruginosa dele tion mutants. BMC Microbiol 5:30

    PubMed  Google Scholar 

  • Christopher GW, Agan MB, Cieslak TJ, Olson PE (2005) His tory of U.S. Military contributions to the study of bacterial zoonoses. Mil Med 170:39–48

    Google Scholar 

  • Cloeckaert A (2004) DNA polymorphism and taxonomy of Brucella species. Lopez-Goni I, Moriyon I (eds) Brucella: molecular and cellular biology. Horizon Bioscience, Wymondham, pp 1–24

    Google Scholar 

  • Cloeckaert A, Verger JM, Grayon M, Paquet JY, Garin-Bastuji B, Foster G, Godfroid J (2001) Classification of Brucella spp. Isolated from marine mammals by DNA polymorphism at the omp2 locus. Microb Infect 3:729–738

    CAS  Google Scholar 

  • Cloeckaert A, Grayon M, Grepinet O, Boumedine KS (2003) Clas sification of Brucella strains isolated from marine mam mals by infrequent restriction site-pcr and development of specific PCR identification tests. Microb Infect 5:593–602

    CAS  Google Scholar 

  • Comerci DJ, Altabe S, de Mendoza D, Ugalde RA (2006) Brucella abortus synthesizes phosphatidylcholine from choline provided by the host. J Bacteriol 188:1929–1934

    PubMed  CAS  Google Scholar 

  • Conde-Alvarez R, Grillo MJ, Salcedo S P, de Miguel MJ, Fugier E, Gorvel JP, Moriyon I, Iriarte M (2006) Synthesis of phos phatidylcholine, a typical eukaryotic phospholipid, is necessary for full virulence of the intracellular bacterial parasite Brucella abortus. Cell Microbiol 8:1322–1335

    PubMed  CAS  Google Scholar 

  • Connolly J P, Comerci D, Alefantis TG, Walz A, Quan M, Chafin R, Grewal P, Mujer C V, Ugalde RA, DelVecchio VG (2006) Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vac cine development. Proteomics 6:3767–3780

    PubMed  CAS  Google Scholar 

  • Contreras-Rodriguez A, Ramirez-Zavala B, Contreras A, Schurig GG, Sriranganathan N, Lopez-Merino A (2003) Purification and characterization of an immunogenic aminopeptidase of Brucella melitensis. Infect Immun 71:5238–5244

    PubMed  CAS  Google Scholar 

  • Cook WE, Williams ES, Thorne ET, Kreeger TJ, Stout G, Bards ley K, Edwards H, Schurig G, Colby LA, Enright F, Elxer PH (2002) Brucella abortus strain RB51 vaccination in elk. I. Efficacy of reduced dosage. J Wildl Dis 38:18–26

    PubMed  Google Scholar 

  • Corbeil LB, Blau K, Inzana TJ, Nielsen KH, Jaconson RH, Cor beil RR, Winter AJ (1988) Killing of Brucella abortus by bovine serum. Infect Immun 56:3251–3261

    PubMed  CAS  Google Scholar 

  • Corbel MJ (1975) Proposal for minimal standards for descrip tions of new species and biotypes of the genus Brucella. Int J Syst Bacteriol 25:83–89

    Google Scholar 

  • Corbel MJ, Banai M (2005) Genus I. Brucella Meyer and Shaw 1920, 173AL. In Brenner DJ, Krieg NR, Staley JT (eds). Bergey's Manual of Systematic Bacteriology. Vol 2. Springer, pp 370–386

    Google Scholar 

  • Covert J, Eskra L, Splitter G (2005) Isolation of Brucella abor tus total RNA from B. abortus-infected murine raw macro phages. J Microbiol Meth 60:383–393

    CAS  Google Scholar 

  • Cutler SJ, Whatmore AM, Commander NJ (2005) Brucellosis — New aspects of an old disease. J Appl Microbiol 98:1270– 1281

    PubMed  CAS  Google Scholar 

  • Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: Mul tiple alignment of conserved genomic sequence with rear rangements. Genom Res 14:1394–1403

    CAS  Google Scholar 

  • Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J, Lory S, Ramphal R (2003) A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseu domonas aeruginosa. Mol Microbiol 50:809–824

    PubMed  CAS  Google Scholar 

  • De Ley J, Segers P, Lievens A, Denijn M, Vanhoucke M, Gillis M (1987) Ribosomal ribonucleic acid cistron similarities and taxonomic neighborhood of Brucella and cdc group vd. Int J Syst Bacteriol 37:35–42

    Google Scholar 

  • de Paz HD, Sanqari FJ, Bolland S, Garcia-Lobo JM, Dehio C, de la Cruz F, Llosa M (2005) Functional interactions between type IV secretion systems involved in DNA trans fer and virulence. Microbiology 151:3505–3516

    PubMed  Google Scholar 

  • Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with glimmer. Nucl Acids Res 27:4636–4641

    PubMed  CAS  Google Scholar 

  • deLorenzo V, Jakubzik U, Timmis KN (1990) Mini-tn5 trans-poson derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    PubMed  Google Scholar 

  • Delpino M V, Marchesini MI, Estein SM, Somerci DJ, Cassataro J, Fossati CA, Baldi PC (2007) A bile salt hydrolase of Bru cella abortus contributes to the establishment of a success ful infection through the oral route in mice. Infect Immun 75:299–305

    PubMed  CAS  Google Scholar 

  • Delrue RM, Martinez-Lorenzo M, Lestrate P, Danese I, Bielarz V, Mertens P, De Bolle X, Tibor A, Gorvel JP, Letesson JJ (2001) Identification of Brucella spp. genes involved in intracellular trafficking. Cell Microbiol 3:487–497

    PubMed  CAS  Google Scholar 

  • Delrue RM, Lestrate P, Tibor A, Letesson JJ, De Bolle X (2004) Brucella pathogenesis, genes identified from random large-scale screens. FEMS Microbiol Lett 231:1–12

    PubMed  CAS  Google Scholar 

  • Delrue RM, Deschamps C, Leonard S, Nijskens C, Danese I, Schaus JM, Bonnot S, Ferooz J, Tibor A, De Bolle X, Letesson JJ (2005) A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar appa ratus of Brucella melitensis. Cell Microbiol 7:1151–1161

    PubMed  CAS  Google Scholar 

  • DelVecchio VG, Wagner MA, Eschenbrenner M, Horn TA, Kraycer JA, Estock F, Elzer P, Mujer CV (2002a) Brucella proteomes-a review. Vet Microbiol 90:593–603

    CAS  Google Scholar 

  • DelVecchio VG, Kapatral V, Elzer P, Patra G, Mujer CV (2002b) The genome of Brucella melitensis. Ve t Microbiol 90:587–592

    CAS  Google Scholar 

  • DelVecchio VG, Kapatral V, Redkar RJ, Patra G, Mujer C, Los T, Ivanova N, Anderson I, Bhattacharyya A, Lykidis A, Reznik G, Jablonski L, Larsen N, D'Souza M, Bernal A, Mazur M, Goltsman E, Selkov E, Elzer PH, Haquis S, O'Callaghan D, Letesson JJ, Haselkorn R, Kyrpides N, Overbeek R (2002c) The genome sequence of the facultative intracellular patho gen Brucella melitensis. Proc Natl Acad Sci USA 99:443–448

    CAS  Google Scholar 

  • DelVecchio VG, Alefantis T, Ugalde RA, Comerci D, Marchesini MI, Khan A, Lubitz W, Mujer CV (2006) Identification of protein candidates for developing bacterial ghost vaccines against Brucella. Meth Biochem Anal 49:363–377

    CAS  Google Scholar 

  • Deqiu S, Donglou X, Jiming Y (2002) Epidemiology and control of brucellosis in China. Vet Microbiol 90:165–182

    PubMed  Google Scholar 

  • Detilleux PG, Deyoe BL, Cheville NF (1991) Effect of endocytic and metabolic inhibitors on the internalization and intra cellular growth of Brucella abortus in Vero cells. Am J Vet Res 52:1658–1664

    PubMed  CAS  Google Scholar 

  • Diaz R, Jones LM, Wilson JB (1967) Antigenic relationship of Brucella ovis and Brucella melitensis. J Bacteriol 93: 1262–1268

    PubMed  CAS  Google Scholar 

  • Ding XZ, Paulsen IT, Bhattacharjee AK, Nikolich M P, Myers G, Hoover DL (2006) A high efficiency cloning and expression system for proteomic analysis. Proteomics 6:4038–4046

    PubMed  CAS  Google Scholar 

  • Dornand J, Gross A, Lafont V, Liautard J, Oliaro J, Liautard JP (2002) The innate immune response against Brucella in humans. Vet Microbiol 90:383–394

    PubMed  CAS  Google Scholar 

  • Dozot M, Boigegrain RA, Delrue RM, Hallez R, Ouahrani-Bettache S, Danese I, Letesson JJ, De Bolle X, Kohler S (2006) The strin gent response mediator rsh is required for Brucella meliten sis and Brucella suis virulence, and for expression of the type iv secretion system virB. Cell Microbiol 8:1791–1802

    PubMed  CAS  Google Scholar 

  • Edgar RC (2004) Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucl Acids Res 32:1792–1797

    PubMed  CAS  Google Scholar 

  • Ekaza E, Guilloteau L, Teyssier J, Liautard JP, Kohler S (2000) Functional analysis of the ClpATPase ClpA of Brucella suis, and persistence of a knockout mutant in BALB/c mice. Microbiology 146:1605–1616

    PubMed  CAS  Google Scholar 

  • Elberg SS, Faunce K (1957) Immunization against Brucella infection. VI. Immunity conferred on goats by a nonde pendent mutant from a streptomycin-dependent mutant strain of Brucella melitensis. J Bacteriol 73:211–217

    PubMed  CAS  Google Scholar 

  • Elzer PH, Phillips RW, Kovach ME, Peterson KM, Roop RM (1994) Characterization and genetic complementation of a Brucella abortus high-temperature-requirement a (htrA) deletion mutant. Infect Immun 62:4135–4139

    PubMed  CAS  Google Scholar 

  • Elzer PH, Kovach ME, Phillips RW, Robertson GT, Peterson KM, Roop RM (1995) In vivo and in vitro stability of the broad-host-range cloning vector pBBR1MCS in six Bru cella species. Plasmid 33:51–57

    PubMed  CAS  Google Scholar 

  • Endley S, McMurray D, Ficht TA (2001) Interruption of the cydB locus in Brucella abortus attenuates intracellular survival and virulence in the mouse model of infection. J Bacteriol 183:2454–2462

    PubMed  CAS  Google Scholar 

  • England T, Kelly L, Jones RD, MacMillan A, Wooldridge M (2004) A simulation model of brucellosis spread in british cattle under several testing regimes. Prev Vet Med 63:63–73

    PubMed  CAS  Google Scholar 

  • Eschenbrenner M, Wagner MA, Horn TA, Kraycer JA, Mujer C V, Haguis S, Elzer P, DelVecchio VG (2002) Comparative proteome analysis of Brucella melitensis vaccine strain Rev 1 and a virulent strain, 16 M. J Bacteriol 184: 4962–4970

    PubMed  CAS  Google Scholar 

  • Eschenbrenner M, Horn TA, Wagner MA, Mujer CV, Miller-Scandle TL, DelVecchio VG (2006) Comparative proteome analysis of laboratory grown Brucella abortus 2308 and Brucella melitensis 16 M. J Proteom Res 5:1731–1740

    CAS  Google Scholar 

  • Eskra L, Canavessi A, Carey M, Splitter G (2001) Brucella abor tus genes identified following constitutive growth and macrophage infection. Infect Immun 69:7736–7742

    PubMed  CAS  Google Scholar 

  • Eskra L, Mathison A, Splitter G (2003) Microarray analysis of mRNA levels from RAW264.7 macrophages infected with Brucella abortus. Infect Immun 71:1125–1133

    PubMed  CAS  Google Scholar 

  • Etter R P, Drew ML (2006) Brucellosis in elk of eastern Idaho. J Wildlife Dis 42:271–278

    Google Scholar 

  • Evans A (1950) Comments on the early history of human bru cellosis, Cleghorn G. Observations of the Epidemical Dis eases of Minorca (From the Years 1744 to 1749). In: Larson CH, Soule MH (eds) Brucellosis. Waverly Press, Baltimore, MD, pp 1–8

    Google Scholar 

  • Ewalt DR, Harrington R (1979) Isolation of Brucella abortus, strain 19, from cattle. J Am Vet Med Assoc 174:172–173

    PubMed  CAS  Google Scholar 

  • Ewalt DR, Payeur JB, Martin BM, Cummins DR, Miller WG (1994) Characteristics of a Brucella species from a bot tlenose dolphin (Tursiops truncatus). J Vet Diagn Invest 6:448–452

    PubMed  CAS  Google Scholar 

  • Eze MO, Yuan L, Crawford RM, Paranavitana CM, Hadfield TL, Bhattacharjee AK, Warren RL, Hoover DL (2000) Effects of opsonization and gamma interferon on growth of Brucella melitensis 16M in mouse peritoneal macrophages in vitro. Infect Immun 68:257–263

    PubMed  CAS  Google Scholar 

  • Farlow J, Smith KL, Wong J, Abrams M, Lytle M, Keim P (2001) Francisella tularensis strain typing using multiple-locus, variable-number tandem repeat analysis. J Clin Microbiol 39:3186–3192

    PubMed  CAS  Google Scholar 

  • Fekete A, Bantle JA, Halling SM, Sanborn MR (1990) Prelimi nary development of a diagnostic test for Brucella using polymerase chain reaction. J Appl Bacteriol 69:216–227

    PubMed  CAS  Google Scholar 

  • Fekete A, Bantle JA, Halling SM, Stich RW (1992) Amplifica tion fragment length polymorphism in Brucella strains by use of polymerase chain reaction with arbitrary primers. J Bacteriol 174:7778–7783

    PubMed  CAS  Google Scholar 

  • Fernandez-Lago L, et al. (1996). Endogenous gamma interferon and interleukin-10 in Brucella abortus 2308 infection in mice. FEMS Immunol Med Microbiol 15:109–114

    PubMed  CAS  Google Scholar 

  • Fernandez-Prada CM, Kinolich M, Vemulapalli R, Sriranga nathan N, Boyle SM, Schurig GG, Hadfield TL, Hoover DL (2001) Deletion of wboA enhances activation of the lectin pathway of complement in Brucella abortus and Brucella melitensis. Infect Immun 69:4407–4416

    PubMed  CAS  Google Scholar 

  • Fernandez-Prada CM, Zelazowska EB, Nikolich M, Hadfield TL, Roop RM, Robertson GL, Hoover DL (2003) Interac tions between Brucella melitensis and human phagocytes: Bacterial surface O-polysaccharide inhibits phagocytosis, bacterial killing, and subsequent host cell apoptosis. Infect Immun 71:2110–2119

    PubMed  CAS  Google Scholar 

  • Ficht TA, Bearden SW, Sowa BA, Marquis H (1990) Genetic variation at the omp2 porin locus of the Brucellae: Species specific markers. Mol Microbiol 4:1135–1142

    PubMed  CAS  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM (1995) Whole-genome random sequencing and assem bly of Haemophilus influenzae rd. Science 269:496–512

    PubMed  CAS  Google Scholar 

  • Finlay BB, McFadden G (2006) Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124(4): 767–782

    PubMed  CAS  Google Scholar 

  • Fosgate GT, Carpenter TE, Chomel BB, Case JT, DeBess EE, Reilly KF (2002) Time-space clustering of human brucel losis, California, 1973–1992. Emerg Infect Dis 8:672–678

    PubMed  Google Scholar 

  • Foster G, Jahans KL, Reid RJ, Ross HM (1996) Isolation of Brucella species from cetaceans, seals and an otter. Vet Rec 138:583–586

    PubMed  CAS  Google Scholar 

  • Foulongne V, Bourg G, Cazevieille C, Michaux-Charachon S, O'Callaghan D (2000) Identification of Brucella SUIS genes affecting intracellular survival in an in vitro human mac rophage infection model by signature-tagged transposon mutagenesis. Infect Immun 68:1297–1303

    PubMed  CAS  Google Scholar 

  • Fretin D, Fauconnier A, Kohler S, Halling S, Leonard S, Nijskens C, Ferooz J, Lestrate P, Delrue RM, Danese I, Vandenhaute J, Tibor A, DeBolle X, Letesson JJ (2005) The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol 7:687–698

    PubMed  CAS  Google Scholar 

  • Gamazo C, Winter AJ, Moriyon I, Riezu-Boj JI, Blasco JM, Diaz R (1989) Comparative analyses of proteins extracted by hot saline or released spontaneously into outer membrane blebs from field strains of Brucella ovis and Brucella melitensis. Infect Immun 57:1419–1426

    PubMed  CAS  Google Scholar 

  • Garcia P, Yrivarren JL, Argumans C, Crosby E, Carrillo C, Gotuzzo E (1990) Evaluation of the bone marrow in patients with brucellosis. Clinico-pathological correlation. Enferm Infecc Microbiol Clin 8:19–24

    PubMed  CAS  Google Scholar 

  • Gee JE, De BK, Levett PN, Whitney AM, Novak RT, Popovic T (2004) Use of 16s rRNA gene sequencing for rapid con firmatory identification of Brucella isolates. J Clin Micro biol 42:3649–3654

    CAS  Google Scholar 

  • Gee JM, Valderas MW, Kovach ME, Grippe VK, Robertson GT, Ng WL, Richardson JM, Winkler ME, Roop RM (2005) The Brucella abortus Cu/Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macro phages and wild-type virulence in experimentally infected mice. Infect Immun 73:2873–2880

    PubMed  CAS  Google Scholar 

  • Gevaert K, Vandekerckhove J (2000) Protein identification methods in proteomics. Electrophoresis 21:1145–1154

    PubMed  CAS  Google Scholar 

  • Gil A (2000) Zoonosis en los sistemas de produccion animal de las areas urbanas y peiurbanas de america latina. FAO Livestock Information and Policy Branch Livestock Policy Discussion paper

    Google Scholar 

  • Godfroid F, Taminiau B, Danese I, Denoel P, Tibor A, Weynants V, Cloeckaert A, Godfroid J, Letesson JJ (1998) Identi fication of the perosamine synthetase gene of Brucella melitensis 16M and involvement of lipopolysaccharide O side chain in Brucella survival in mice and in macro phages. Infect Immun 66:5485–5493

    PubMed  CAS  Google Scholar 

  • Godfroid J, Cloeckaert A, Liautard J P, Kohler S, Fretin D, Walravens K, Garin-Bastuji B, Letesson JJ (2005) From the discovery of the Malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet Res 36:313–326

    PubMed  Google Scholar 

  • Gorvel JP, Moreno E (2002) Brucella intracellular life: From inva sion to intracellular replication. Vet Microbiol 90:281–297

    PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: An RNA family database. Nucl Acids Res 31:439–441

    PubMed  CAS  Google Scholar 

  • Gross A, Terraza A, Ouahrani-Bettache S, Liautard JP, Dorn and J (2000) In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect Immun 68:342–351

    PubMed  CAS  Google Scholar 

  • Groussaud P, Shankster SJ, Koylass MS, Whatmore AM (2007) Molecular typing divides marine mammal strains of Brucella into at least threegroups with distinct host pref erences. J Med Microbiol 56:1512–1518

    PubMed  Google Scholar 

  • Guerrero G, Peralta H, Aguilar A, Diaz R, Villalobos MA, Medrano-Soto A, Mora J (2005) Evolutionary, structural and functional relationships revealed by comparative analysis of syntenic genes in Rhizobiales. BMC Evol Biol 5:55

    PubMed  Google Scholar 

  • Gupta RS (2005) Protein signatures distinctive of alpha proteo-bacteria and its subgroups and a model for alpha-proteo-bacterial evolution. Crit Rev Microbiol 31:101–135

    PubMed  CAS  Google Scholar 

  • Hahn MY, Raman S, Anaya M, Husson RN (2005) The Myco bacterium tuberculosis extracytoplasmic-function sigma factor sigL regulates polyketide synthases and secreted or membrane proteins and is required for virulence. J Bacte riol 187:7062–7071

    CAS  Google Scholar 

  • Haine V, Sinon A, Van Steen F, Rousseau S, Dozot M, Lestrate P, Lambert C, Letesson JJ, DeBolle X (2005) Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect Immun 73:5578–5586

    PubMed  CAS  Google Scholar 

  • Halling SM, Bricker BJ (1994) Characterization and occurrence of two repeated palindromic DNA elements of Brucella spp.: Bru-rs1 and Bru-rs2. Mol Microbiol 14:681–689

    PubMed  CAS  Google Scholar 

  • Halling SM, Jensen AE (2006) Intrinsic and selected resistance toantibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications. BMC Microbiol 6:84–99

    PubMed  Google Scholar 

  • Halling SM, Zuerner RL (2002) Evidence for lateral transfer to Brucella: Characterization of a locus with a Tn-like element (tn2020). Biochem Biophys Acta 1574:109–116

    PubMed  CAS  Google Scholar 

  • Halling SM, Detilleux PG, Tatum FM, Judge BA, Mayfield JE (1991) Deletion of the bcsp31 gene of Brucella abortus by replacement. Infect Immun 59:3863–3868

    PubMed  CAS  Google Scholar 

  • Halling SM, Tatum FM, Bricker BJ (1993) Sequence and char acterization of an insertion sequence, IS711, from Brucella ovis. Gene 133:123–127

    PubMed  CAS  Google Scholar 

  • Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li LL, Kapur V, Alt D P, Olsen SC (2005) Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 187:2715–2726

    PubMed  CAS  Google Scholar 

  • Hautefort I, Hinton JC (2000) Measurement of bacterial gene expression in vivo. Philos Trans R Soc Lond B Biol Sci 355:601–611

    PubMed  CAS  Google Scholar 

  • He Y, Vines RR, Wattam AR, Abramochkin GV, Dickerman AW, Eckart JD, Sobral BW (2005) Piml: The pathogen informa tion markup language. Bioinformatics 21:116–121

    PubMed  CAS  Google Scholar 

  • He Y, Reichow S, Ramamoorthy S, Ding X, Lathigra R, Craig JC, Sobral BW, Schurig GG, Sriranganathan N, Boyle SM (2006) Brucella melitensis triggers time-dependent modu lation of apoptosis and down-regulation of mitochon drion-associated gene expression in mouse macrophages. Infect Immun 74:5035–5046

    PubMed  CAS  Google Scholar 

  • Henikoff JG, Henikoff S (1996) Blocks database and its applica tions. Meth Enzymol 266:88–105

    PubMed  CAS  Google Scholar 

  • Herzberg M, Elberg SS (1955) Immunization against Brucella infection. III. Response of mice and guinea pigs to injec tion of viable and nonviable suspensions of a streptomy cin-dependent mutant of Brucella melitensis. J Bacteriol 69:432–435

    PubMed  CAS  Google Scholar 

  • Hirsch P, Conti SF (1964) Biology of budding bacteria. II. Growth and nutrition of Hyphomicrobium spp. Arch Mikrobiol 48:358–367

    PubMed  CAS  Google Scholar 

  • Hirsch P, Rheinheimer G (1968) Biology of budding bacteria. V. Budding bacteria in aquatic habitats: Occurrence, enrich ment and isolation. Arch Mikrobiol 62:289–306

    PubMed  CAS  Google Scholar 

  • Hoffman EM, Houle JJ (1983) Failure of Brucella abor tus lipopolysaccharide (lps) to activate the alternative pathway of complement. Vet Immunol Immunopathol 5:65–76

    Google Scholar 

  • Hoffmann EM, Houle JJ (1995) Contradictory roles for anti body and complement in the interaction of Brucella abor tus with its host. Crit Rev in Microbiol 21:153–163

    CAS  Google Scholar 

  • Holmes BPM, Kiredjian M, Kersters K (1988) Ochrobac trum anthropi gen. Nov., sp. Nov. From human clinical specimens and previously known as group vd. Int J Syst Bacteriol 38:406–416

    Google Scholar 

  • Hommais F, Pereira S, Acquaviva C, Escobar-Paramo P, Denamur E (2005) Single-nucleotide polymorphism phylotyping of Escherichia coli. Appl Environ Microbiol 71:4784–4792

    PubMed  CAS  Google Scholar 

  • Hong PC, Tsolis RM, Ficht TA (2000) Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 68:4102–4107

    PubMed  CAS  Google Scholar 

  • Hoover DL, Fridelander AM (1997) Brucellosis. Medical Aspects of Chemical and Biological Warfare, Office of The Surgeon General, Borden Institute, Walter Reed Army Medical Center: 513–521

    Google Scholar 

  • Hoppner C, Carle A, Sivanesan D, Hoeppner S, Baron C (2005) The putative lytic transglycosylase virB1 from Brucella suis interacts with the type iv secretion system core components virB8, virB9 and virB11. Microbiology 151:3469–3482

    PubMed  Google Scholar 

  • Hoyer BH, McCullough NB (1968a) Homologies of deoxyribo nucleic acids from Brucella ovis, canine abortion organ isms, and other Brucella species. J Bacteriol 96: 1783–1790

    CAS  Google Scholar 

  • Hoyer BH, McCullough NB (1968b) Polynucleotide homologies of Brucella deoxyribonucleic acids. J Bacteriol 95:444–448

    CAS  Google Scholar 

  • Husser CS, Buchhalter JR, Raffo OS, Shabo A, Brown SH, Lee KE, Elkin PL (2006) Standardization of microarray and pharmacogenomics data. Meth Mol Biol 316:111–157

    Google Scholar 

  • Ichikawa JK, Norris A, Bangera MG, Geiss GK, van't Wout AB, Bumgarner RE, Lory S (2000) Interaction of Pseudomonas aeruginosa with epithelial cells: Identification of differen tially regulated genes by expression microarray analysis of human cDNAs. Proc Natl Acad Sci USA 97:9659–9664

    PubMed  CAS  Google Scholar 

  • Inatsuka CS, Julio SM, Cotter PA (2005) Bordetella filamentous hemagglutinin plays a critical role in immunomodulation, suggesting a mechanism for host specificity. Proc Natl Acad Sci USA 102:18578–18583

    PubMed  CAS  Google Scholar 

  • Jahans KL, Foster G, Broughton ES (1997) The characterisation of Brucella strains isolated from marine mammals. Vet Microbiol 57:373–382

    PubMed  CAS  Google Scholar 

  • Jiang X, Baldwin CL (1993) Effects of cytokines on intracellular growth of Brucella abortus. Infect Immun 61:124–134

    PubMed  CAS  Google Scholar 

  • Jimenez de Bagues MP, Terraza A, Gross A, Dornand J (2004) Different responses of macrophages to smooth and rough Brucella spp.: Relationship to virulence. Infect Immun 72:2429–2433

    PubMed  Google Scholar 

  • Jones SM, Winter AJ (1992) Survival of virulent and attenuated strains of Brucella abortus in normal and gamma inter feron-activated murine peritoneal macrophages. Infect Immun 60:3011–3014

    PubMed  CAS  Google Scholar 

  • Joyce AR, Palsson BO (2006) The model organism as a sys tem: Integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7: 198–210

    PubMed  CAS  Google Scholar 

  • Jumas-Bilak E, Maugard C, Michaux-Charachon S, Allardet-Servent A, Perrin A, O'Callaghan D, Ramuz M (1995) Study of the organization of the genomes of Escherichia coli, Brucella melitensis and Agrobacterium tumefaciens by insertion of a unique restriction site. Microbiology 141:2425–2432

    PubMed  CAS  Google Scholar 

  • Jumas-Bilak E, Michaux-Charachon S, Bourg G, Ramuz M, Allardet-Servent A (1998a) Differences in chromosome number and genome rearrangements in the genus Bru cella. Mol Microbiol 27:99–106

    CAS  Google Scholar 

  • Jumas-Bilak E, Michaux-Charachon S, Bourg G, Ramuz M, Allardet-Servent A (1998b) Unconventional genomic organ ization in the alpha subgroup of the proteobacteria. J Bacteriol 180:2749–2755

    CAS  Google Scholar 

  • Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A (2003) Prediction of lipoprotein signal peptides in gram-negative bacteria. Protein Sci 12:1652–1662

    PubMed  CAS  Google Scholar 

  • Kahl-McDonagh MM, Ficht TA (2006) Evaluation of protec tion afforded by Brucella abortus and Brucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infect Immun 74:4048–4057

    PubMed  CAS  Google Scholar 

  • Kahl-McDonagh MM, Elzer PH, Haguis SD, Walker JV, Perry QL, Seabury CM, den Hartigh AB, Tsolis RM, Adams LG, Davis DS, Ficht TA (2006) Evaluation of novel Brucella melitensis unmarked deletion mutants for safety and efficacy in the goat model of brucellosis. Vaccine 24:5169–5177

    PubMed  CAS  Google Scholar 

  • Kanehisa M, Bork P (2003) Bioinformatics in the post-sequence era. Nat Genet 33 (Suppl):305–310

    PubMed  CAS  Google Scholar 

  • Karp PD, Paley S, Romero P (2002) The pathway tools software. Bioinformatics 18 (Suppl 1):S225–S232

    PubMed  Google Scholar 

  • Kaufmann AF, Meltzer MI, Schmid GP (1997) The economic impact of a bioterrorist attack: Are prevention and postattack intervention programs justifiable? Emerg Infect Dis 3:83–94

    PubMed  CAS  Google Scholar 

  • Keim P, Price LB, Klevytska AM, Smith KL, Schupp JM, Oki naka R, Jackson PJ, Hugh-Jones ME (2000) Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. J Bacteriol 182:2928–2936

    PubMed  CAS  Google Scholar 

  • Kendall SL, Movahedzadeh F, Rison SC, Wernisch L, Parish T, Duncan K, Betss JC, Stoker NG (2004) The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis (Edinb) 84:247–255

    CAS  Google Scholar 

  • Khan AS, Mujer C V, Alefantis TG, Connolly J P, Mayr UB, Walcher P, Lubitz W, DelVecchio VG (2006) Proteomics and bioin formatics strategies to design countermeasures against infectious threat agents. J Chem Inf Model 46:111–115

    PubMed  CAS  Google Scholar 

  • Kim S, Watarai M, Kondo Y, Erdenebaatar J, Makino S, Shi rahata T (2003) Isolation and characterization of mini Tn5km2 insertion mutants of Brucella abortus deficient in internalization and intracellular growth in HeLa cells. Infect Immun 71:3020–3027

    PubMed  CAS  Google Scholar 

  • Kim S, Lee DS, Watanabe K, Furuoka H, Suzuki H, Watarai M (2005) Interferon-gamma promotes abortion due to Bru cella infection in pregnant mice. BMC Microbiol 5:22

    PubMed  Google Scholar 

  • Kohler S, Foulongne V, Ouahrani-Bettache S, Bourg G, Teyssier J, Ramuz M, Liautard JP (2002a) The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the mac rophage host cell. Proc Natl Acad Sci USA 99:15711–15716

    CAS  Google Scholar 

  • Kohler S, Porte F, Jubier-Maurin V, Ouahrani-Bettache S, Teyssier J, Liautard JP (2002b) The intramacrophagic environment of Brucella suis and bacterial response. Vet Microbiol 90:299–309

    CAS  Google Scholar 

  • Kohler S, Michaux-Charachon S, Porte F, Ramuz M, Liautard JP (2003) What is the nature of the replicative niche of a stealthy bug named Brucella?. Trends Microbiol 11: 215–219

    PubMed  CAS  Google Scholar 

  • Kortepeter MG, Parker GW (1999) Potential biological weap ons threats. Emerg Infect Dis 5:523–527

    PubMed  CAS  Google Scholar 

  • Kouba V (2003) A method of accelerated eradication of bovine brucellosis in the Czech Republic. Rev Sci Tech 22:1003– 1012

    PubMed  CAS  Google Scholar 

  • Kovach ME, Phillips RW, Elzer PH, Roop RM, Peterson KM (1994) pBBR1MCS: A broad-host-range cloning vector. BioTechniques 16:800–802

    PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pbbr1mcs, carrying dif ferent antibiotic-resistance cassettes. Gene 166:175–176

    PubMed  CAS  Google Scholar 

  • Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antoneseu C, Salzberg SL (2004) Versatile and open soft ware for comparing large genomes. Genom Biol 5:R12

    Google Scholar 

  • Lai F, Schurig GG, Boyle SM (1990) Electroporation of a sui cide plasmid bearing a transposon into Brucella abortus. Microb Pathog 9:363–368

    PubMed  CAS  Google Scholar 

  • Lambert JM, Bongers RS, Kleerebezem M (2007) Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Micro biol 73:1126–1135

    CAS  Google Scholar 

  • Lapaque N, Takeuchi O, Corrales F, Akira S, Moriyon I, Howard JC, Gorvel JP (2006) Differential inductions of TNF-alpha and IGTP, IIGP by structurally diverse classic and non classic lipopolysaccharides. Cell Microbiol 8:401–413

    PubMed  CAS  Google Scholar 

  • Lavigne J P, O'Callaghan D, Blanc-Potard AB (2005) Require ment of mgtC for Brucella suis intramacrophage growth: A potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg2+ environment. Infect Immun 73:3160–3163

    PubMed  CAS  Google Scholar 

  • Lawson JN, Lyons CR, Johnston SA (2006) Expression profiling of Yersinia pestis during mouse pulmonary infection. DNA Cell Biol 25:608–616

    PubMed  CAS  Google Scholar 

  • Le Fleche P, Jacques I, Grayon M, Al Dahouk S, Bouchon P, Denoeud F, Nockler K, Neubauer H, Guilloteau LA, Vergnaud G (2006) Evaluation and selection of tandem repeat loci for a Brucella mlvA typing assay. BMC Microbiol 6:9

    PubMed  Google Scholar 

  • Leal-Klevezas DS, Martinez-de-la-Vega O, Ramirez-Barba EJ, Osterman B, Martinez-Soriano JP, Simpson J (2005) Geno typing of Ochrobactrum spp. by AFLP analysis. J Bacteriol 187:2537–2539

    PubMed  CAS  Google Scholar 

  • Leavitt MO (2005) Possession, use and transfer of select agents and toxinbs; final rule. In: Services dohah (ed) Federal Register, pp 13294–13325

    Google Scholar 

  • Lebuhn M, Achouak W, Schloter M, Berge O, Meier H, Barakat M, Hartmann A, Heulin T (2000) Taxonomic characteriza tion of Ochrobactrum sp. Isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. Nov. And Ochrobactrum grignonense sp. Int J Syst Evol Microbiol 50:2207–2223

    CAS  Google Scholar 

  • Lebuhn M, Bathe S, Achouak W, Hartmann A, Heulin T, Schloter M (2006) Comparative sequence analysis of the internal transcribed spacer 1 of Ochrobactrum species. Syst Appl Microbiol 29:265–275

    PubMed  CAS  Google Scholar 

  • Lee KB, Liu CT, Anzai Y, Kim H, Aono T, Oyaizu H (2005) The hierarchical system of the ‘alphaproteobacteria’: Descrip tion of Hyphomonadaceae fam. Nov., Xanthobacteraceae fam. Nov. and Erythrobacteraceae fam. Nov. Int J Syst Evol Microbiol 55:1907–1919

    PubMed  CAS  Google Scholar 

  • Leonard S, Ferooz J, Haine V, Danese I, Fretin D, Tibor A, de Walque S, De Bolle X, Letesson JJ (2007) Ftcr is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae. J Bacteriol 189: 131–141

    PubMed  CAS  Google Scholar 

  • Lestrate P, Delrue RM, Danese I, Didembourg C, Taminiau B, Mertens P, De Bolle X, Tibor A, Tang CM, Letesson JJ (2000) Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol Microbiol 38:543–551

    PubMed  CAS  Google Scholar 

  • Lestrate P, Dricot A, Delrue RM, Lambert C, Martinelli V, De Bolle X, Letesson JJ, Tibor A (2003) Attenuated signature tagged mutagenesis mutants of Brucella melitensis iden tified during the acute phase of infection in mice. Infect Immun 71:7053–7060

    PubMed  CAS  Google Scholar 

  • LeVier K, Phillips RW, Grippe VK, Roop RM, Walker GC (2000) Similar requirements of a plant symbiont and a mamma lian pathogen for prolonged intracellular survival. Science 287:2492–2493

    PubMed  CAS  Google Scholar 

  • Levinson G, Gutman G (1987) Slipped-strand mispairing: A major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    PubMed  CAS  Google Scholar 

  • Lin J, Ficht TA (1995) Protein synthesis in Brucella abortus pro teins induced during macrophage infection. Infect Immun 63:1409–1414

    PubMed  CAS  Google Scholar 

  • Lizewski SE, Schurr JR, Jackson DW, Frisk A, Carterson AJ, Schurr MJ (2004) Identification of algR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol 186:5672–5684

    PubMed  CAS  Google Scholar 

  • Lobry JR (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665

    PubMed  CAS  Google Scholar 

  • Losick V P, Isberg RR (2006) Nf-kappaB translocation prevents host cell death after low-dose challenge by Legionella pneumophila. J Exp Med 203:2177–2189

    PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) TRNASCAN-SE: A program for improved detection of transfer rna genes in genomic se quence. Nucl Acids Res 25:955–964

    PubMed  CAS  Google Scholar 

  • Lukashin AV, Borodovsky M (1998) Genemark.Hmm: New solutions for gene finding. Nucl Acids Res 26:1107–1115

    PubMed  CAS  Google Scholar 

  • Luna-Martinez JE, Mejia-Teran C (2002) Brucellosis in Mexico. Ve t Microbiol 90:19–30

    Google Scholar 

  • Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, Smith I, Palu G, Riccardi G, Manganelli R (2007) Global analysis of Mycobacterium tuberculosis zur (furB) regulon. J Bacteriol 189:730–740

    PubMed  CAS  Google Scholar 

  • Manganelli R, Voskuil M, Schoolnik GK, Smith I (2001) The Mycobacterium tuberculosis ecf sigma factor sigmae: Role in global gene expression and survival in macrophages. Mol Microbiol 41:423–437

    PubMed  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bem ben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Hel gessen S, Ho CH, Irzyk G P, Jando SC, Alenquer ML, Jarvie T P, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon Jh, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc B P, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed  CAS  Google Scholar 

  • Marusina K (2005) Whole genome sequencing in 24 hours. Genet Eng News 25

    Google Scholar 

  • McEwen A (1940) Experiments on contagious abortion. The immunity of cattle inoculated with vaccines of graded virulence. Vet Rec 52:815

    Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    PubMed  CAS  Google Scholar 

  • McQuiston JR, Vemulapalli R, Inzana TJ, Schurig GG, Sriran ganathan N, Fritzinger D, Hadfield TL, Warren RA, Lin dler LE, Snellings N, Hoover D, Halling SM, Boyle SM (1999) Genetic characterization of a Tn5-disrupted glycosyltransferase gene homolog in Brucella abortus and its effect on lipopolysaccharide composition and viru lence. Infect Immun 67:3830–3835

    PubMed  CAS  Google Scholar 

  • Menard R, Sansonetti PJ, Parsot C (1993) Nonpolar muta genesis of the ipa genes defines ipaB, ipaC, and ipaD as effectors of Shigella flexneri entry into epithelial cells. J Bacteriol 175:5899–5906

    PubMed  CAS  Google Scholar 

  • Mercier E, Jumas-Bilak E, Allardet-Servent A, O'Callaghan D, Ramuz M (1996) Polymorphism in Brucella strains detected by studying distribution of two short repetitive DNA elements. J Clin Microbiol 34:1299–1302

    PubMed  CAS  Google Scholar 

  • Meyer K, Show E (1920) A comparison of the morphological, cultural, and biochemical characteristics of B. abortus andB. melitensis; studies of the genus Brucella. J Infect Dis 27:73–184

    Google Scholar 

  • Michaux S, Paillisson J, Carles-Nurit MJ, Bourg G, Allardet-Servent A, Ramuz M (1993) Presence of two independent chromosomes in the Brucella melitensis 16M genome. J Bacteriol 175:701–705

    PubMed  CAS  Google Scholar 

  • Michaux-Charachon S, Bourg G, Jumas-Bilak E, Guigue-Talet P, Allardet-Servent A, O'Callaghan D, Ramuz M (1997) Genome structure and phylogeny in the genus Brucella. J Bacteriol 179:3244–3249

    PubMed  CAS  Google Scholar 

  • Michaux-Charachon S, Jumas-Bilak E, Allardet-Servent A, Bourg G, Boschiroli ML, Ramuz M, O'Callaghan D (2002) The Brucella genome at the beginning of the post-genomic era. Ve t Microbiol 90:581–585

    CAS  Google Scholar 

  • Minas A, Minas M, Stournara A, Tselepidis S (2004) The effects of Rev-1 vaccination of sheep and goats on human brucel losis in Greece. Prev Vet Med 64:41–47

    PubMed  CAS  Google Scholar 

  • Monreal D, Grillo MJ, Gonzalez D, Marin CM, De Miguel MJ, Lopez-Goni I, Cloeckaert A, Moriyon I (2003) Charac terization of Brucella abortus O-polysaccharide and core ipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model. Infect Immun 71:3261–3271

    PubMed  CAS  Google Scholar 

  • Monsieurs P, De Keersmaecker S, Navarre WW, Bader MW, De Smet F, McClelland M, Fang FC, De Moor B, Vanderley den J, Marchal K (2005) Comparison of the phoPQ regu lon in Escherichia coli and Salmonella typhimurium. J Mol Evol 60:462–474

    PubMed  CAS  Google Scholar 

  • Moon HW, Nagy B, Isaacson RE, Orskov I (1977) Occurrence of K99 antigen on Escherichia coli isolated from pigs and colonization of pig ileum by K99+ enterotoxigenic E. coli from calves and pigs. Infect Immun 15:614–620

    PubMed  CAS  Google Scholar 

  • Moreno E (1997) In search of a bacterial species definition. Rev Biol Trop 45:735–771

    Google Scholar 

  • Moreno E (1998) Genome evolution within the alpha-pro teobacteria: Why do some bacteria not possess plasmids and others exhibit more than one different chromosome? FEMS Microbiol Rev 22:255–275

    PubMed  CAS  Google Scholar 

  • Moreno E (2002) Brucellosis in Central America. Vet Microbiol 90:31–38

    PubMed  Google Scholar 

  • Moreno E, Moriyon I (2002) Brucella melitensis: A nasty bug with hidden credentials for virulence. Proc Natl Acad Sci USA 99:1–3

    PubMed  CAS  Google Scholar 

  • Moreno E, Stackebrandt E, Dorsch M, Wolters J, Busch M, Mayer H (1990) Brucella abortus 16s rRNA and lipid a reveal a phy logenetic relationship with members of the alpha-2 subdivi sion of the class proteobacteria. J Bacteriol 172:3569–3576

    PubMed  CAS  Google Scholar 

  • Moreno E, Cloeckaert A, Moriyon I (2002) Brucella evolution and taxonomy. Ve t Microbiol 90:209–227

    CAS  Google Scholar 

  • Moriyon I, Grillo MJ, Monreal D, Gonzalez D, Marin C, Lopez Goni I, Mainar-Jaime RC, Moreno E, Blasco JM (2004) Rough vaccines in animal brucellosis: Structural and genetic basis and present status. Vet Res 35:1–38

    PubMed  Google Scholar 

  • Morris JA (1973) The use of polyacrylamide gel electrophore sis in taxonomy of Brucella. J Gen Microbiol 76:231–237

    PubMed  CAS  Google Scholar 

  • Mujer CV, Wagner MA, Escenbrenner M, Horn T, Kraycer JA, Redkar R, Hagius S, Elzer P, DelVecchio VG (2002) Global analysis of Brucella melitensis proteomes. Ann NY Acad Sci 969:97–101

    PubMed  CAS  Google Scholar 

  • Munford RS, Weaver RE, Patton C, Feeley JC, Feldman RA (1975) Human disease caused by Brucella canis. A clinical and epi demiologic study of two cases. JAMA 231:1267–1269

    PubMed  CAS  Google Scholar 

  • Murphy EA, et al. (2001). Interferon-gamma is crucial for surviv ing a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology 103:511–518

    PubMed  CAS  Google Scholar 

  • Navarro E, Casao MA, Solera J (2004) Diagnosis of human bru cellosis using PCR. Expert Rev Mol Diagn 4:115–123

    PubMed  CAS  Google Scholar 

  • Navarro E, Segura JC, Castano MJ, Solera J (2006) Use of real time quantitative polymerase chain reaction to monitor the evolution of Brucella melitensis DNA load during therapy and post-therapy follow-up in patients with bru cellosis. Clin Infect Dis 42:1266–1273

    PubMed  CAS  Google Scholar 

  • Nicoletti P (2002) A short history of brucellosis. Ve t Microbiol 90:5–9

    Google Scholar 

  • O'Callaghan D, Cazevieille C, Allardet-Servent A, Boschiroli ML, Bourg G, Foulongne V, Frustos P, Kulakov Y, Ramuz M (1999) A homologue of the Agrobacterium tumefaciens virB and Bordetella pertussis ptl type IV secretion systems is essential for intracellular survival of Brucella suis. Mol Microbiol 33:1210–1220

    PubMed  Google Scholar 

  • Olsen SC, Stoffregen WS (2005) Essential role of vaccines in brucellosis control and eradication programs for livestock. Expert Rev Vaccines 4:915–928

    PubMed  Google Scholar 

  • Olson NE (2006) The microarray data analysis process: From raw data to biological significance. NeuroRx 3:373–383

    PubMed  CAS  Google Scholar 

  • Osterman B (2006) International committee on systematics of prokaryotes. Subcommittee on the taxonomy of Brucella. Report of the meeting, 17 September 2003, Pamplona, Spain. Int J Syst Evol Microbiol 56:1173–1175

    Google Scholar 

  • Oomen RP, Young NM, Bundle DR (1991) Molecular modeling of antibody-antigen complexes between the Brucella abor tus O-chain polysaccharide and a specific monoclonal antibody. Protein Engg 4:427–433

    CAS  Google Scholar 

  • Ouahrani S, Michaux S, Sri Widada J, Bourg G, Tournebize R, Ramuz M, Liautard JP (1993) Identification and sequence analysis of IS6501, an insertion sequence in Brucella spp.: Relationship between genomic structure and the number of IS6501 copies. J Gen Microbiol 139:3265–3273

    PubMed  CAS  Google Scholar 

  • Ouahrani-Bettache S, Soubrier M P, Liautard JP (1996) IS6501-anchored PCR for the detection and identifica tion of Brucella species and strains. J Appl Bacteriol 81: 154–160

    PubMed  CAS  Google Scholar 

  • Palanduz A, Palanduz S, Guler K, Guler N (2000) Brucellosis in a mother and her young infant: Probably transmission by breast milk. Int J Infect Dis 4:55–56

    PubMed  CAS  Google Scholar 

  • Pan American Health Organization (1998) Country health pro files. Salud en las Americas 1 and 2

    Google Scholar 

  • Pappas G, Akritidis N, Bosilkovski M, Tsianos E (2005a) Bru cellosis. New Eng J Med 352:2325–2336

    CAS  Google Scholar 

  • Pappas G, Solera J, Akritidis N, Tsianos E (2005b) New approaches to the antibiotic treatment of brucellosis. Int J Antimicrob Agents 26:101–105

    CAS  Google Scholar 

  • Pappas G, Panagopoulou P, Christou L, Akritidis N (2006a) Brucella as a biological weapon. Cell Mol Life Sci 63: 2229–2236

    CAS  Google Scholar 

  • Pappas G, Panagopoulou P, Akritidis N, Christou L, Tsianos EV (2006b) The new global map of human brucellosis. Lancet Infect Dis 6:91–99

    Google Scholar 

  • Paranavitana CM, Zelazowska E, Das R, Izadjoo M, Jett M, Hoover D (2005a) Identification of novel genes in the memory response to Brucella infection by cDNA arrays. Mol Cell Probes 19:341–348

    CAS  Google Scholar 

  • Paranavitana C, Zelazowska E, Izadjoo M, Hoover D (2005b) Interferon-gamma associated cytokines and chemokines produced by spleen cells from Brucella-immune mice. Cytokine 30:86–92

    CAS  Google Scholar 

  • Paschos A, Patey G, Sivanesan D, Gao C, Bayliss R, Waksman G, O'Callaghan D, Baron C (2006) Dimerization and inter actions of Brucella suis virB8 with virB4 and virB 10 are required for its biological activity. Proc Natl Acad Sci USA 103:7252–7257

    PubMed  CAS  Google Scholar 

  • Paulsen IT, Seshadri R, Nelson KE, Eisen JA, Heidelberg JF, Read TD, Dodson RJ,Umayam L, Brinkac LM, Beanan MJ, Daugh erty SC, Deboy RT, Durkin AS, Kolonay JF, Madupu R, Nel son WC, Ayodeji B, Kraul M, Shetty J, Malek J, Van Aken SE, Riedmuller S, Tettelin H, Gill SR, White O, Salzberg SL, Hoover DL, Lindler LE, Halling SM, Boyle SM, Fraser CM (2002) The Brucella suis genome reveals fundamental sim ilarities between animal and plant pathogens and symbi onts. Proc Natl Acad Sci USA 99:13148–13153

    PubMed  CAS  Google Scholar 

  • Pei J, Ficht TA (2004) Brucella abortus rough mutants are cytopathic for macrophages in culture. Infect Immunol 72:440–450

    CAS  Google Scholar 

  • Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O (2001) The comprehensive microbial resource. Nucl Acids Res 29:123–125

    PubMed  CAS  Google Scholar 

  • Posadas DM, Martin FA, Sabio y Garcia J V, Spera JM, Delpino M V, Baldi P, Campos E, Cravero SL, Zorrequieta A (2007) The tolC homologue of Brucella suis is involved in resist ance to antimicrobial compounds and virulence. Infect Immun 75:379–389

    PubMed  CAS  Google Scholar 

  • Potter SC, Clarke L, Curwen V, Keenan S, Mongin E, Searle SM, Stabenau A, Storey R, Clamp M (2004) The ensemble anal ysis pipeline. Genom Res 14:934–941

    CAS  Google Scholar 

  • Pourbagher A, Pourbagher MA, Savas L, Turunc T, Demiroglu Z, Erol I, Yalcintas D (2006) Epidemiologic, clinical, and imaging findings in brucellosis patients with osteoarticu lar involvement. AJR Am J Roentgenol 187:873–880

    PubMed  Google Scholar 

  • Puri S, O'Brian MR (2006) The hmuQ and hmuD genes from Bradyrhizobium japonicum encode heme-degrading en zymes. J Bacteriol 188:6476–6482

    PubMed  CAS  Google Scholar 

  • Ragan VE (2002) The animal and plant health inspection serv ice (aphis) brucellosis eradication program in the United States. Vet Microbiol 90:11–18

    PubMed  Google Scholar 

  • Rajashekara G, Glasner JD, Glover DA, Splitter GA (2004) Com parative whole-genome hybridization reveals genomic islands in Brucella species. J Bacteriol 186:5040–5051

    PubMed  CAS  Google Scholar 

  • Rajashekara G, Glasner JD, Krepps M, Splitter GA (2005) Temporal analysis of pathogenic events in virulent and avirulent Brucella melitensis infections. Cell Microbiol 7:1459–1473

    PubMed  CAS  Google Scholar 

  • Ratushna VG, Sturgill DM, Ramamoorthy S, Reichow SA, He Y, Lathigra R, Sriranganathan N, Halling SM, Boyle SM, Gibas CJ (2006) Molecular targets for rapid identification of Brucella spp. BMC Microbiol 6:13

    PubMed  Google Scholar 

  • Renders N, Licciardello L, IJsseldijk C, Sijmons M, van Alphen L, Verbrugh H, van Belkum A (1999) Variable numbers of tan dem repeat loci in genetically homogeneous haemophilus influenzae strains alter during persistent colonisation of cystic fibrosis patients. FEMS Microbiol Lett 173:95–102

    PubMed  CAS  Google Scholar 

  • Retief JD (2000) Phylogenetic analysis using PHYLIP. Meth Mol Biol 132:243–258

    CAS  Google Scholar 

  • Rhyan JC, Gidlewski T, Ewalt DR, Hennager SG, Lambourne DM, Olsen SC (2001) Seroconversion and abortion in cattle experimentally infected with Brucella sp. Isolated from a pacific harbor seal (Phoca vitulina richardsi). J Vet Diagn Invest 13:379–382

    PubMed  CAS  Google Scholar 

  • Rigby CE, Fraser AD (1989) Plasmid transfer and plasmid mediated genetic exchange in Brucella abortus. Can J Vet Res 53:326–330

    PubMed  CAS  Google Scholar 

  • Robertson GT, Roop RM (1999) The Brucella abortus host factor i (hf-i) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol Microbiol 34:690–700

    PubMed  CAS  Google Scholar 

  • Robertson GT, Reisenauer A, Wright R, Jensen RB, Jensen A, Shapiro L, Roop RM (2000) The Brucella abortus ccrM DNA methyltransferase is essential for viability, and its over expression attenuates intracellular replication in murine macrophages. J Bacteriol 182:3482–3489

    PubMed  CAS  Google Scholar 

  • Rodriguez JL, Palmer GH, Knowles D P, Brayton KA (2005) Distinctly different msp2 pseudogene repertoires in Ana plasma marginale strains that are capable of superinfec tion. Gene 361:127–132

    PubMed  CAS  Google Scholar 

  • Roop RM, Gee JM, Robertson GT, Richardson JM, Ng WL, Winkler ME (2003) Brucella stationary-phase gene expres sion and virulence. Annu Rev Microbiol 57:57–76

    PubMed  CAS  Google Scholar 

  • Roop RM, Bellaire BH, Valderas MW, Cardelli JA (2004) Adap tation of the Brucellae to their intracellular niche. Mol Microbiol 52:621–630

    PubMed  CAS  Google Scholar 

  • Rose DR, Przybylska M, To RJ, Kayden CS, Oomen R P, Vorberg E, Young NM, Bundle DR (1993) Crystal structure to 2.45 A resolution of a monoclonal Fab specific for the Brucella A cell wall polysaccharide antigen. Protein Sci 2:1106–1113

    PubMed  CAS  Google Scholar 

  • Roset MS, Ciocchini AE, Ugalde RA, Inon de Iannino N (2006) The Brucella abortus cyclic beta-1,2-glucan virulence fac tor is substituted with o-ester-linked succinyl residues. J Bacteriol 188:5003–5013

    PubMed  CAS  Google Scholar 

  • Ross HM, Foster G, Reid RJ, Jahans KL, MacMillan AP (1994) Brucella species infection in sea-mammals. Vet Rec 134:359

    PubMed  CAS  Google Scholar 

  • Roth F, Zinsstag J, Orkhon D, Chimed-Ochir G, Hutton G, Cosivi O, Carrin G, Otte J (2003) Human health benefits from livestock vaccination for brucellosis: Case study. Bull World Health Organ 81:876–876

    Google Scholar 

  • Roux CM, et al. (2007) Brucella requires a functional Type IV secretion system to elicit innate immune responses in mice. Cell Microbiol 9(7):1851–1869

    PubMed  CAS  Google Scholar 

  • Ruben B, Band JD, Wong P, Colville J (1991) Person-to-per son transmission of Brucella melitensis. Lancet Infect Dis 337:14–15

    CAS  Google Scholar 

  • Samartino L (2002) Brucellosis in Argentina. Vet Microbiol 90:71–80

    PubMed  Google Scholar 

  • Sangari F, Aguero J (1991) Mutagenesis of Brucella abortus: Comparative efficiency of three transposon delivery sys tems. Microb Pathog 11:443–446

    PubMed  CAS  Google Scholar 

  • Sangari FJ, Seoane A, Rodriguez MC, Aguero J, Garcia Lobo JM (2007) Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect Immun 75:774–780

    PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    PubMed  CAS  Google Scholar 

  • Santos JM, Verstreate D, Perera VY, Winter AJ (1984) Outer membrane proteins from rough strains of four Brucella species. Infect Immun 46:188–194

    PubMed  CAS  Google Scholar 

  • Sauret JM, Vilissova N (2002) Human brucellosis. J Am Board Fam Pract 15(5):401–406. URL: http://www.ncbi.nlm.nih. gov/pubmed/12350062 (PMID: 12350062)

    PubMed  Google Scholar 

  • Schurig GG, Roop RM, Bagchi T, Boyle SM, Buhrman D, Sriran ganathan N (1991) Biological properties of RB51; a sta ble rough strain of Brucella abortus. Vet Microbiol 28: 171–188

    PubMed  CAS  Google Scholar 

  • Schlake T, Bode J (1994) Use of mutated FLP recognition tar get (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33:12746– 12751.

    PubMed  CAS  Google Scholar 

  • Service RF (2006) Gene sequencing. The race for the $1000 genome. Science 311:1544–1546

    PubMed  CAS  Google Scholar 

  • Sieira R, Comerci DJ, Pietrasanta LI, Ugalde RA (2004) Inte gration host factor is involved in transcriptional regula tion of the Brucella abortus virB operon. Mol Microbiol 54:808–822

    PubMed  CAS  Google Scholar 

  • Simmons GC, Hall WTK (1953) Epididymitis of rams. Aust Vet J 29:33–40

    Google Scholar 

  • Snyder EE, Kampanya N, Lu J, Nordberg EK, Karur HR, Shukla M, Soneja J, Tian Y, Xue T, Yoo H, Zhang F, Dharmanolla C, Dongre N V, Gillespie JJ, Hamelius J, Hance M, Hunting ton KI, Jukneliene D, Koziski J, Mackasmiel L, Mane S P, Nguyen V, Purkayastha A, Shallom J, Yu G, Guo Y, Gabbard J, Hix D, Azad AF, Baker SC, Boyle SM, Khudyakov Y, Meng XJ, Rupprecht C, Vinje J, Crasta OR, Czar MJ, Dickerman A, Eckart JD, Kenyon R, Will R, Setubal JC, Sobral BW (2007) Patric: The VBI pathosystems resource integration center. Nucl Acids Res 35:D401–D406

    PubMed  CAS  Google Scholar 

  • Snyder JA, Haugen BJ, Buckles EL, Lockatell C V, Johnson DE, Donnenberg MS, Welch RA, Mobley HL (2004) Transcrip tome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72:6373–6381

    PubMed  CAS  Google Scholar 

  • Sohn AH, Probert WS, Glaser CA, Gupta N, Bollen AW, Wong JD, Grace EM, McDonald WC (2003) Human neurobrucel losis with intracerebral granuloma caused by a marine mammal Brucella spp. Emerg Infect Dis 9:485–488

    PubMed  Google Scholar 

  • Sola-Landa A, Pizarro-Cerda J, Grillo MJ, Moreno E, Moriyon I, Blasco JM, Gorvel J P, Lopez-Goni I (1998) A two-com ponent regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abor tus and controls cell invasion and virulence. Mol Microbiol 29:125–138

    PubMed  CAS  Google Scholar 

  • Solera J, Martinez-Alfaro E, Espinosa A, Castillejos MI, Geyo P, Rodriguez-Zapata M (1998) Multivariate model for pre dicting relapse in human brucellosis. J Infect 36:85–92

    PubMed  CAS  Google Scholar 

  • Spera JM, Ugalde JE, Mucci J, Comerci DJ, Ugalde RA (2006) A B lymphocyte mitogen is a Brucella abortus virulence factor required for persistent infection. Proc Natl Acad Sci USA 103:16514–16519

    PubMed  CAS  Google Scholar 

  • Sriwanthana B, Island MD, Maneval D, Mobley HL (1994) Single-step purification of Proteus mirabilis urease acces sory protein UreE, a protein with a naturally occurring histidine tail, by nickel chelate affinity chromatography. J Bacteriol 176:6836–6841

    PubMed  CAS  Google Scholar 

  • Stein L (2003) Integrating biological databases. Nat Rev (Genet ics) 4:337–345

    CAS  Google Scholar 

  • Stevens MG, Olsen SC, Pugh GW, Mayfield JE (1997) Role of immune responses to a groEL heat shock protein in pre venting brucellosis in mice vaccinated with Brucella abortus strain RB51. Comp Immunol Microbiol Infect Dis 20:147–153

    PubMed  CAS  Google Scholar 

  • Stoenner HG, Lackman DB (1957) A new species of Brucella isolated from the desert wood rat, Neotoma lepida thomas. Am J Ve t Res 18:947–951

    CAS  Google Scholar 

  • Strange K (2005) The end of “Naive reductionism”: Rise of sys tems biology or renaissance of physiology? Am J Physiol Cell Physiol 288:C968–C974

    PubMed  CAS  Google Scholar 

  • Suzek BE, Ermolaeva MD, Schreiber M, Salzberg SL (2001) A probabilistic method for identifying start codons in bacterial genomes. Bioinformatics 17:1123–1130

    PubMed  CAS  Google Scholar 

  • Talaat AM, Lyons R, Howard ST, Johnston SA (2004) The tem poral expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 101: 4602–4607

    PubMed  CAS  Google Scholar 

  • Taleski V, Zerva L, Kantardjiev T, Cvetnic Z, Erski-Biljic M, Nikolovski B, Bosnjakovski J, Katalinic-Jankovic V, Pan teliadou A, Stojkoski S, Kirandziski T (2002) An overview of the epidemiology and epizootology of brucellosis in selected countries of central and southeast Europe. Vet Microbiol 90:147–155

    PubMed  CAS  Google Scholar 

  • Tamayo R, Prouty AM, Gunn JS (2005) Identification and functional analysis of Salmonella enterica serovar typh imurium pmrA-regulated genes. FEMS Immunol Med Microbiol 43:249–258

    PubMed  CAS  Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucl Acids Res 28:33–36

    PubMed  CAS  Google Scholar 

  • Tcherneva E, Rijpens N, Naydensky C, Herman LM (1996) Repet itive element sequence based polymerase chain reaction for typing of Brucella strains. Vet Microbiol 51:169–178

    PubMed  CAS  Google Scholar 

  • Tcherneva E, Rijpens N, Jersek B, Herman LM (2000) Differen tiation of Brucella species by random amplified polymor phic DNA analysis. J Appl Microbiol 88:69–80

    PubMed  CAS  Google Scholar 

  • Tech M, Pfeifer N, Morgenstern B, Meinicke P (2005) Tico: A tool for improving predictions of prokaryotic translation initiation sites. Bioinformatics 21:3568–3569

    PubMed  CAS  Google Scholar 

  • Teixeira-Gomes A P, Cloeckaert A, Bezard G, Dubray G, Zyg munt MS (1997) Mapping and identification of Brucella melitensis proteins by two-dimensional electrophoresis and microsequencing. Electrophoresis 18:156–162

    PubMed  CAS  Google Scholar 

  • Thiede B, Hohenwarter W, Krah A, Mattow J, Schmid M, Schmidt F, Jungblut PR (2005) Peptide mass fingerprint ing. Methods 35:237–247

    PubMed  CAS  Google Scholar 

  • Tibor A, Wansard V, Bielartz V, Delrue RM, Danese I, Michel P, Walravens K, Godfroid J, Letesson JJ (2002) Effect of omp10 or omp19 deletion on Brucella abortus outer mem brane properties and virulence in mice. Infect Immun 70:5540–5546

    PubMed  CAS  Google Scholar 

  • Tobes R, Ramos JL (2005) Rep code: Defining bacterial identity in extragenic space. Environ Microbiol 7:225–228

    PubMed  CAS  Google Scholar 

  • Traum J (1914) Report of the Chief of the Bureau of Animal Industry, United States Department of Agriculture, Wash ington, D.C., p 30

    Google Scholar 

  • Tsolis RM (2002) Comparative genome analysis of the alpha proteobacteria: Relationships between plant and animal pathogens and host specificity. Proc Natl Acad Sci USA 99:12503–12505

    PubMed  CAS  Google Scholar 

  • Tsolis RM, Townsend SM, Miao EA, Miller SI, Ficht TA, Adams LG, Baumler AJ (1999) Identification of a putative Salmo nella typhimurium host range factor with homology to ipaH and yopM by signature-tagged mutagenesis. Infect Immunol 67:6385–6393

    CAS  Google Scholar 

  • Tsuda M, Karita M, Morshed MG, Okita K, Nakazawa T (1994a) A urease-negative mutant of Helicobacter pylori con structed by allelic exchange mutagenesis lacks the abil ity to colonize the nude mouse stomach. Infect Immun 62:3586–3589

    CAS  Google Scholar 

  • Tsuda M, Karita M, Mizote T, Morshed MG, Okita K, Nakazawa T (1994b) Essential role of Helicobacter pylori urease in gastric colonization: Definite proof using a urease-nega tive mutant constructed by gene replacement. Eur J Gas troenterol Hepatol 6(Suppl 1):S49–S52

    Google Scholar 

  • Tumurkhuu G, Koide N, Takahashi K, Hassan F, Islam S, Ito H, Mori I, Yoshida T (2006) Characterization of biological activities of Brucella melitensis lipopolysaccharide. Micro biol Immunol 50:421–427

    CAS  Google Scholar 

  • Ugalde RA (1999) Intracellular lifestyle of Brucella spp. Com mon genes with other animal pathogens, plant pathogens, and endosymbionts. Microbes Infect 1:1211–1219

    PubMed  CAS  Google Scholar 

  • Velasco J, Romero C, Lopez-Goni I, Leiva J, Diaz R, Moriyon I (1998) Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. Nov., a new species with a closer relation ship to Brucella spp. Int J Syst Bacteriol 48:759–768

    PubMed  CAS  Google Scholar 

  • Vemulapalli TH, Vemulapalli R, Schurig GG, Boyle SM, Sriran ganathan N (2006) Role in virulence of a Brucella abortus protein exhibiting lectin-like activity. Infect Immunol 74: 183–191

    CAS  Google Scholar 

  • Verger JM, Grimont F, Grimont PAD, Grayon M (1985) Brucella, a monospecific genus as shown by deoxyribonucleic acid hybridization. Int J Syst Bacteriol 35:292–295

    Google Scholar 

  • Verger JM, Grimont F, Grimont PA, Grayon M (1987) Taxon omy of the genus Brucella. Ann Inst Pasteur Microbiol 138:235–238

    PubMed  CAS  Google Scholar 

  • Verger JM, Grayon M, Chaslus-Dancla E, Meurisse M, Lafont JP (1993) Conjugative transfer and in vitro/in vivo stability of the broad-host-range incP r751 plasmid in Brucella spp. Plasmid 29:142–146

    PubMed  CAS  Google Scholar 

  • Verger JM, Grayon M, Cloeckaert A, Lefevre M, Ageron E, Grimont F (2000) Classification of Brucella strains iso lated from marine mammals using DNA-DNA hybridiza tion and ribotyping. Res Microbiol 151:797–799

    PubMed  CAS  Google Scholar 

  • Vizcaino N, Cloeckaert A, Verger J, Grayon M, Fernandez-Lago L (2000) DNA polymorphism in the genus Brucella. Microb Infect 2:1089–1100

    CAS  Google Scholar 

  • Vizcaino N, Cloeckaert A, Zygmunt MS, Fernandez-Lago L (2001) Characterization of a Brucella species 25-kilobase DNA fragment deleted from Brucella abortus reveals a large gene cluster related to the synthesis of a polysaccha ride. Infect Immun 69:6738–6748

    PubMed  CAS  Google Scholar 

  • Wagner MA, Eschenbrenner M, Horn TA, Kraycer JA, Mujer C V, Haguis S, Elzer P, DelVecchio VG (2002) Global analy sis of the Brucella melitensis proteome: Identification of proteins expressed in laboratory-grown culture. Proteom ics 2:1047–1060

    CAS  Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: Effects of growth phase and environment. J Bacteriol 185:2080–2095

    PubMed  CAS  Google Scholar 

  • Weiss DS, Takeda K, Akira S, Zychlinsky A, Moreno E (2005) Myd88, but not toll-like receptors 4 and 2, is required for efficient clearance of Brucella abortus. Infect Immun 73: 5137–5143

    PubMed  CAS  Google Scholar 

  • Westhusin ME, Shin T, Templeton JW, Burghardt RC, Adams LG (2007) Rescuing valuable genomes by animal cloning: A case for natural disease resistance in cattle. J Anim Sci 85: 138–142

    PubMed  CAS  Google Scholar 

  • Whatmore AM, Murphy TJ, Shankster S, Young E, Cutler SJ, Macmillan AP (2005) Use of amplified fragment length polymorphism to identify and type Brucella isolates of med ical and veterinary interest. J Clin Microbiol 43:761–769

    PubMed  CAS  Google Scholar 

  • Whatmore AM, Perrett LL, MacMillan AP (2007) Characteri sation of the genetic diversity of Brucella by multilocus sequencing. BMC Microbiol 7:34

    PubMed  Google Scholar 

  • Whatmore AM, Shankster SJ, Perrett LL, Murphy TJ, Brew SD, Thirlwall RE, Cutler SJ, MacMillan AP (2006) Identifica tion and characterization of variable-number tandem repeat markers for typing of Brucella spp. J Clin Microbiol 44:1982–1993

    PubMed  CAS  Google Scholar 

  • Williams KP, Sobral BW, Dickerman AW (2007) A robust species tree for the alphaproteobacteria.J Bacteriol 189:4578– 4586

    PubMed  CAS  Google Scholar 

  • Wilson JW, Ramamurthy R, Porwollik S, McClelland M, Ham mond T, Allen P, Ott CM, Pierson DL, Nickerson CA (2002) Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci USA 99:13807–13812

    PubMed  CAS  Google Scholar 

  • Wise DJ (1995) Intracellular growth of Brucella abortus and B. melitensis in murine macrophage-like cell lines and partial characterization of a biologically active extract from B. abortus strain RB51. Ph dissertation. Virginia Tech, Blacksburg, VA

    Google Scholar 

  • World Health Organization (2005) The control of neglected zoonotic diseases; a route to poverty alleviation. Zoonoses and Veterinary Public Health, WHO, Geneva, Switzerland

    Google Scholar 

  • Wu Q, Pei J, Turse C, Ficht TA (2006) Mariner mutagenesis of Brucella melitensis reveals genes with previously unchar acterized roles in virulence and survival. BMC Microbiol 6:102–116

    PubMed  Google Scholar 

  • Xiang Z, Zheng W, He Y (2006) Bbp: Brucella genome annota tion with literature mining and curation. BMC Bioinform 7:347–361

    Google Scholar 

  • Yagupsky P, Baron EJ (2005) Laboratory exposures to Brucellae and implications for bioterrorism. Emerg Infect Dis 11: 1180–1185

    PubMed  Google Scholar 

  • Yanagi M, Yamasato K (1993) Phylogenetic analysis of the fam ily Rhizobiaceae and related bacteria by sequencing of 16s rRNA gene using PCR and DNA sequencer. FEMS Micro biol Lett 15:115–120

    Google Scholar 

  • Yang X, Hudson M, Walters N, Bargatze RF, Pascual DW (2005) Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infect Immun 73:7297–7303

    PubMed  CAS  Google Scholar 

  • Yingst S, Hoover DL (2003) T cell immunity to brucellosis. Crit Rev Microbiol 29:313–331

    PubMed  CAS  Google Scholar 

  • Young EJ (2000) Brucella species, pp 2386–2393. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Dougles and Bennette's Principles and Practice of Infectious Diseases, 5th ed. Churchill Livingstone, Philadelphia, PA

    Google Scholar 

  • Yu GX, Boyle SM, Crasta OR (2007) A versatile computational pipeline for bacterial genome annotation improvement and comparative analysis, with Brucella as a use case. Nucl Acids Res 35:3953–3962

    PubMed  CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) Interproscan — an integration platform for the signature-recognition methods in inter pro. Bioinformatics 17:847–848

    PubMed  CAS  Google Scholar 

  • Zhan Y, Cheers C (1993) Endogenous gamma interferon medi ates resistance to Brucella abortus infection. Infect Immun 61:4899–4901

    PubMed  CAS  Google Scholar 

  • Zylberman V, Craig PO, Klinke S, Braden BC, Cauerhff A, Goldbaum FA (2004) High order quaternary arrange ment confers increased structural stability to Brucella sp. lumazine synthase. J Biol Chem 279:8093–8101

    CAS  Google Scholar 

  • Zylberman V, Klinke S, Haase I, Bacher A, Fischer M, Goldbaum FA (2006) Evolution of vitamin B2 biosynthesis: 6,7-Dime thyl-8-ribityllumazine synthases of Brucella. J Bacteriol 188:6135–6142

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sriranganathan, N. et al. (2009). Brucella. In: Nene, V., Kole, C. (eds) Genome Mapping and Genomics in Animal-Associated Microbes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74042-1_1

Download citation

Publish with us

Policies and ethics