Skip to main content

Thermodynamics of Protein Folding from Coarse-Grained Models’ Perspectives

  • Chapter
Book cover Rugged Free Energy Landscapes

Part of the book series: Lecture Notes in Physics ((LNP,volume 736))

Abstract

Folding and aggregation of proteins, the interaction between proteins and membranes, as well as the adsorption of organic soft matter to inorganic solid substrates belong to the most interesting challenges in understanding structure and function of complex macromolecules. This is reasoned by the interdisciplinary character of the associated questions ranging from the molecular origin of the loss of biological functionality as, for example, in Alzheimer’s disease to the development of organic circuits for biosensory applications. In this lecture, we focus on the analysis of mesoscopic models for protein folding, aggregation, and hybrid systems of soft and solid condensed matter. The simplicity of the coarse-grained models allows for a more universal description of the notoriously difficult problem of protein folding. In this approach, classifications of structure formation processes with respect to the conformational pseudophases are possible. This is similar in aggregation and adsorption processes, where the individual folding propensity is influenced by external forces. The main problem in studies of conformational transitions is that the sequences of amino acids, which built up the proteins, are necessarily of finite length and, therefore, a thermodynamic limit does not exist. Thus, structural transitions are not phase transitions in the strict thermodynamic sense and the analysis of pseudouniversal aspects is intricate, as apparently small-system effects accompany all conformational transitions and cannot be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. E. Creighton: Proteins: Structure and Molecular Properties (Freeman, New York, 1993), 2nd ed.

    Google Scholar 

  2. C. Branden, J. Tooze: Introduction to Protein Structure (Garland, New York, 1999), 2nd ed.

    Google Scholar 

  3. K. A. Dill: Protein Sci. 8, 1166 (1999)

    Article  Google Scholar 

  4. C. Tang: Physica A 288, 31 (2000)

    Article  ADS  Google Scholar 

  5. See also the contributions of U. H. E. Hansmann (Chap. refchap:hansmann), A. Irbäck (Chap. refchap:irbaeck), and Y. Okamoto (Chap. refchap:okamoto) to simulations of all-atom protein models in this volume

    Google Scholar 

  6. B. L. de Groot, T. Frigato, V. Helms, H. Grubmüller: J. Mol. Biol. 333, 279 (2003)

    Article  Google Scholar 

  7. R. A. Böckmann, H. Grubmüller: Biophys. J. 85, 1482 (2003)

    Article  Google Scholar 

  8. U. H. E. Hansmann: Physica A 254, 15 (1998); T. Nagasima, Y. Sugita, A. Mitsutake, Y. Okamoto: Comput. Phys. Commun. 146, 69 (2002)

    Article  Google Scholar 

  9. K. A. Dill: Biochemistry 24, 1501 (1985); K. F. Lau, K. A. Dill: Macromolecules 22, 3986 (1989)

    Article  Google Scholar 

  10. B. Berger, T. Leighton: J. Comput. Biol. 5, 27 (1998); P. Crescenzi, D. Goldman, C. Papadimitriou, A. Piccolboni, M. Yannakakis: J. Comput. Biol. 5, 423 (1998)

    Google Scholar 

  11. A. Irbäck, E. Sandelin: J. Chem. Phys. 108, 2245 (1998)

    Article  ADS  Google Scholar 

  12. A. Irbäck, C. Troein: J. Biol. Phys. 28, 1 (2002)

    Article  Google Scholar 

  13. H. Cejtin, J. Edler, A. Gottlieb, R. Helling, H. Li, J. Philbin, C. Tang, N. Wingreen: J. Chem. Phys. 116, 352 (2002)

    Article  ADS  Google Scholar 

  14. R. Schiemann, M. Bachmann, W. Janke: J. Chem. Phys. 122, 114705 (2005)

    Article  ADS  Google Scholar 

  15. R. Schiemann, M. Bachmann, W. Janke: Comput. Phys. Commun. 166, 8 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. K. Yue, K. A. Dill: Phys. Rev. E 48, 2267 (1993); K. Yue, K. A. Dill: Proc. Natl. Acad. Sci. USA 92, 146 (1995)

    Google Scholar 

  17. T. C. Beutler, K. A. Dill: Protein Sci. 5, 2037 (1996)

    Article  Google Scholar 

  18. R. Unger, J. Moult: J. Mol. Biol. 231, 75 (1993)

    Article  Google Scholar 

  19. N. Krasnogor, W. E. Hart, J. Smith, D. A. Pelta: Proceedings of Genetic and Evolutionary Computation Conference (GECCO99), Orlando (1999), p. 1596

    Google Scholar 

  20. Y. Cui, W. H. Wong, E. Bornberg-Bauer, H. S. Chan: Proc. Natl. Acad. Sci. USA 99, 809 (2002)

    Article  ADS  Google Scholar 

  21. N. Lesh, M. Mitzenmacher, S. Whitesides: International Conference on Research in Computational Molecular Biology (RECOMB’03), Berlin (2003), p. 188

    Google Scholar 

  22. T. Jiang, Q. Cui, G. Shi, S. Ma: J. Chem. Phys. 119, 4592 (2003)

    Article  ADS  Google Scholar 

  23. F. Seno, M. Vendruscolo, A. Maritan, J. R. Banavar: Phys. Rev. Lett. 77, 1901 (1996)

    Article  ADS  Google Scholar 

  24. R. Ramakrishnan, B. Ramachandran, J. F. Pekny: J. Chem. Phys. 106, 2418 (1997)

    Article  ADS  Google Scholar 

  25. A. Irbäck, C. Peterson, F. Potthast, E. Sandelin: Phys. Rev. E 58, R5249 (1998)

    Article  ADS  Google Scholar 

  26. L. W. Lee, J.-S. Wang: Phys. Rev. E 64, 056112 (2001)

    Article  ADS  Google Scholar 

  27. G. Chikenji, M. Kikuchi, Y. Iba: Phys. Rev. Lett. 83, 1886 (1999), and references therein

    Article  ADS  Google Scholar 

  28. M. N. Rosenbluth, A. W. Rosenbluth: J. Chem. Phys. 23, 356 (1955)

    Article  Google Scholar 

  29. D. Aldous, U. Vazirani: “Go with the winners” algorithms, 35th Annual Symposium on Foundations of Computer Science, Santa Fe (1994), p. 492

    Google Scholar 

  30. P. Grassberger: Phys. Rev. E 56, 3682 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  31. H. Frauenkron, U. Bastolla, E. Gerstner, P. Grassberger, W. Nadler: Phys. Rev. Lett. 80, 3149 (1998); U. Bastolla, H. Frauenkron, E. Gerstner, P. Grassberger, W. Nadler: Proteins 32, 52 (1998)

    Google Scholar 

  32. P. Grassberger, W. Nadler: “Go with the winners” simulations. In Computational Statistical Physics – From Billiards to Monte Carlo, edited by K. H. Hoffmann, M. Schreiber (Springer, Berlin, 2002), p. 169, and references therein

    Google Scholar 

  33. H.-P. Hsu, V. Mehra, W. Nadler, P. Grassberger: J. Chem. Phys. 118, 444 (2003); H.-P. Hsu, V. Mehra, W. Nadler, P. Grassberger: Phys. Rev. E 68, 21113 (2003)

    Article  ADS  Google Scholar 

  34. M. Bachmann, W. Janke: Phys. Rev. Lett. 91, 208105 (2003)

    Article  ADS  Google Scholar 

  35. M. Bachmann, W. Janke: J. Chem. Phys. 120, 6779 (2004)

    Article  ADS  Google Scholar 

  36. R. J. Najmanovich, J. L. deLyra, V. B. Henriques: Physica A 249, 374 (1998)

    Article  Google Scholar 

  37. K. Yue, K. M. Fiebig, P. D. Thomas, H. S. Chan, E. I. Shakhnovich, K. A. Dill: Proc. Natl. Acad. Sci. USA 92, 325 (1995)

    Article  ADS  Google Scholar 

  38. E. E. Lattman, K. M. Fiebig, K. A. Dill: Biochemistry 33, 6158 (1994)

    Article  Google Scholar 

  39. L. Toma, S. Toma: Protein Sci. 5, 147 (1996)

    Article  Google Scholar 

  40. S. Miyazawa, R. L. Jernigan: J. Mol. Biol. 256, 623 (1996)

    Article  Google Scholar 

  41. Two sequences are only distinguished, if they are not symmetric under reversal of their residues. For a chain with length $N=4$, for example, there are ten relevant sequences instead of 2$4$=16

    Google Scholar 

  42. M. Vendruscolo, E. Domany: Folding Design 2, 295 (1997); M. Vendruscolo, E. Domany: Folding Design 3, 329 (1998)

    Google Scholar 

  43. E. G. Emberly, J. Miller, C. Zeng, N. S. Wingreen, C. Tang: Proteins 47, 295 (2002)

    Article  Google Scholar 

  44. H. Li, R. Helling, C. Tang, N. Wingreen: Science 273, 666 (1996)

    Article  ADS  Google Scholar 

  45. N. Madras, A. D. Sokal: J. Stat. Phys. 50, 109 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. J. C. Guillou, J. Zinn-Justin: Phys. Rev. Lett. 39, 95 (1977); J. C. Guillou, J. Zinn-Justin: Phys. Rev. B 21, 3976 (1980); A. Pelissetto, E. Vicari: Phys. Rep. 368, 549 (2002)

    Google Scholar 

  47. A. M. Ferrenberg, R. H. Swendsen: Phys. Rev. Lett. 63, 1195 (1989)

    Article  ADS  Google Scholar 

  48. B. A. Berg, T. Neuhaus: Phys. Lett. B 267, 249 (1991); B. A. Berg, T. Neuhaus: Phys. Rev. Lett. 68, 9 (1992)

    Google Scholar 

  49. W. Janke: Physica A 254, 164 (1998); B. A. Berg: Fields Inst. Comm. 26, 1 (2000)

    Google Scholar 

  50. B. A. Berg: In Chap. refchap:berg of this volume

    Google Scholar 

  51. T. Vrbová, S. G. Whittington: J. Phys. A 29, 6253 (1996); T. Vrbová, S. G. Whittington: J. Phys. A 31, 3989 (1998); T. Vrbová, K. Procházka: J. Phys. A 32, 5469 (1999)

    Google Scholar 

  52. M. D. Yoder, N. T. Keen, F. Jurnak: Science 260, 1503 (1993)

    Article  ADS  Google Scholar 

  53. F. Rampf, W. Paul, K. Binder: Europhys. Lett. 70, 628 (2005); F. Rampf, W. Paul, K. Binder: J. Polym. Sci.: Part B: Polym. Phys. 44, 2542 (2006)

    Google Scholar 

  54. T. Vogel, M. Bachmann, W. Janke: preprint (2007), submitted to Phys. Rev. E

    Google Scholar 

  55. M. Rief, H. Clausen-Schaumann, H. Gaub: Nat. Struct. Biol. 6, 346 (1999)

    Article  Google Scholar 

  56. D. E. Smith, S. Tans, S. Smith, S. Grimes, D. L. Anderson, C. Bustamante: Nature 413, 748 (2001)

    Article  ADS  Google Scholar 

  57. J. J. Gray: Curr. Opin. Struct. Biol. 14, 110 (2004)

    Article  Google Scholar 

  58. E. Nakata, T. Nagase, S. Shinkai, I. Hamachi: J. Am. Chem. Soc. 126, 490 (2004)

    Article  Google Scholar 

  59. E. Balog, T. Becker, M. Oettl, R. Lechner, R. Daniel, J. Finney, J. C. Smith: Phys. Rev. Lett. 93, 028103 (2004); M. Ikeguchi, J. Ueno, M. Sato, A. Kidera: Phys. Rev. Lett. 94, 078102 (2005)

    Article  ADS  Google Scholar 

  60. J. Forsman, C. E. Woodward: Phys. Rev. Lett. 94, 118301 (2005); G. Reiter: Phys. Rev. Lett. 87, 186101 (2001)

    Google Scholar 

  61. S. Metzger, M. Müller, K. Binder, J. Baschnagel: J. Chem. Phys. 118, 8489 (2003)

    Article  ADS  Google Scholar 

  62. T. Bogner, A. Degenhard, F. Schmid: Phys. Rev. Lett. 93, 268108 (2004)

    Article  ADS  Google Scholar 

  63. G. M. Foo, R. B. Pandey: Phys. Rev. Lett. 80, 3767 (1998); G. M. Foo, R. B. Pandey: Phys. Rev. E 61, 1793 (2000)

    Google Scholar 

  64. R. Hegger, P. Grassberger: J. Phys. A 27, 4069 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  65. Y. Singh, D. Giri, S. Kumar: J. Phys. A 34, L67 (2001); R. Rajesh, D. Dhar, D. Giri, S. Kumar, Y. Singh: Phys. Rev. E 65, 056124 (2002)

    Google Scholar 

  66. M. S. Causo: J. Chem. Phys. 117, 6789 (2002)

    Article  ADS  Google Scholar 

  67. J. Krawczyk, T. Prellberg, A. L. Owczarek, A. Rechnitzer: Europhys. Lett. 70, 726 (2005)

    Article  ADS  Google Scholar 

  68. J.-H. Huang, S.-J. Han: J. Zhejiang Univ. Sci. 5, 699 (2004)

    Article  Google Scholar 

  69. M. Bachmann, W. Janke: Phys. Rev. Lett. 95, 058102 (2005)

    Article  ADS  Google Scholar 

  70. M. Bachmann, W. Janke: Phys. Rev. E 73, 041802 (2006)

    Article  ADS  Google Scholar 

  71. M. Bachmann, W. Janke: Phys. Rev. E 73, 020901(R) (2006)

    ADS  Google Scholar 

  72. M. Bachmann, W. Janke: Chain-growth simulations of lattice-peptide adsorption to attractive substrates. In Proceedings of the NIC Symposium 2006, John von Neumann Institute for Computing, Jülich, NIC Series vol. 32, edited by G. Münster, D. Wolf, M. Kremer (NIC, Jülich, 2006), p. 245

    Google Scholar 

  73. F. Celestini, T. Frisch, X. Oyharcabal: Phys. Rev. E 70, 012801 (2004)

    Article  ADS  Google Scholar 

  74. J. Krawczyk, T. Prellberg, A. L. Owczarek, A. Rechnitzer: J. Stat. Mech. P10004 (2004)

    Google Scholar 

  75. P. Benetatos, E. Frey: Phys. Rev. E 70, 051806 (2004)

    Article  ADS  Google Scholar 

  76. M. Breidenreich, R. R. Netz, R. Lipowsky: Europhys. Lett. 49, 431 (2000); M. Breidenreich, R. R. Netz, R. Lipowsky: Eur. Phys. J. E 5, 403 (2001)

    Article  ADS  Google Scholar 

  77. S. Brown: Nature Biotechnol. 15, 269 (1997)

    Article  Google Scholar 

  78. R. Braun, M. Sarikaya, K. Schulten: J. Biomater. Sci. Polym. Ed. 13, 747 (2002)

    Article  Google Scholar 

  79. S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, A. M. Belcher: Nature (London) 405, 665 (2000)

    Article  ADS  Google Scholar 

  80. K. Goede, P. Busch, M. Grundmann: Nano Lett. 4, 2115 (2004)

    Article  ADS  Google Scholar 

  81. N. Gupta, A. Irbäck: J. Chem. Phys. 120, 3983 (2004)

    Article  ADS  Google Scholar 

  82. F. H. Stillinger, T. Head-Gordon, C. L. Hirshfeld: Phys. Rev. E 48, 1469 (1993); F. H. Stillinger, T. Head-Gordon: Phys. Rev. E 52, 2872 (1995)

    Article  ADS  Google Scholar 

  83. R. Du, V. S. Pande, A. Yu. Grosberg, T. Tanaka, E. S. Shakhnovich: J. Chem. Phys. 108, 334 (1998)

    Article  ADS  Google Scholar 

  84. V. S. Pande, D. S. Rokhsar: Proc. Natl. Acad. Sci. USA 96, 1273 (1999)

    Article  ADS  Google Scholar 

  85. U. H. E. Hansmann, M. Masuya, Y. Okamoto: Proc. Natl. Acad. Sci. USA 94, 10652 (1997)

    Article  ADS  Google Scholar 

  86. B. A. Berg, H. Noguchi, Y. Okamoto: Phys. Rev. E 68, 036126 (2003)

    Article  ADS  Google Scholar 

  87. M. Bachmann, H. Arkin, W. Janke: Phys. Rev. E 71, 031906 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  88. S. Schnabel, M. Bachmann, W. Janke: Phys. Rev. Lett. 98, 048103 (2007); S. Schnabel, M. Bachmann, W. Janke: J. Chem. Phys. 126, 105102 (2007)

    Google Scholar 

  89. C. Junghans, M. Bachmann, W. Janke: Phys. Rev. Lett. 97, 218103 (2006)

    Article  ADS  Google Scholar 

  90. C. Junghans, M. Bachmann, W. Janke: preprint (2007), submitted to J. Chem. Phys.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bachmann, M., Janke, W. (2008). Thermodynamics of Protein Folding from Coarse-Grained Models’ Perspectives. In: Rugged Free Energy Landscapes. Lecture Notes in Physics, vol 736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74029-2_8

Download citation

Publish with us

Policies and ethics