Skip to main content

A Different Approach to Monte Carlo Simulations in Systems with Complex Free-Energy Landscapes

  • Chapter
Rugged Free Energy Landscapes

Part of the book series: Lecture Notes in Physics ((LNP,volume 736))

  • 1074 Accesses

Abstract

We describe a new Monte Carlo algorithm that produces results of high accuracy with reduced simulational effort. In the simplest application of the algorithm, a random walk is performed in energy space, and the resultant density of states is modified continuously to produce a “flat” histogram. This method permits us to directly access the entropy and free energy, is independent of temperature, and is efficient for the study of both first-order and second-order phase transitions as well as complex systems with a rough energy landscape. The method may be extended to random walks in more than one variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. P. Landau, K. Binder: A Guide to Monte Carlo Methods in Statistical Physics, (Cambridge University Press, Cambridge, 2005) 2nd ed.

    Google Scholar 

  2. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller: J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  3. F. Wang, D. P. Landau: Phys. Rev. Lett. 86, 2050 (2001)

    Article  ADS  Google Scholar 

  4. F. Wang, D. P. Landau: Phys. Rev. E 64, 056101 (2001)

    Article  ADS  Google Scholar 

  5. D. P. Landau, F. Wang: Comput. Phys. Commun. 147, 674 (2002)

    Article  MATH  ADS  Google Scholar 

  6. D. P. Landau, S.-H. Tsai, M. Exler: Am. J. Phys. 72, 1294 (2004)

    Article  ADS  Google Scholar 

  7. C. Zhou, R. N. Bhatt: Phys. Rev. E 72, 025701 (2005)

    Article  ADS  Google Scholar 

  8. B. J. Schulz, K. Binder, M. Müller, D. P. Landau: Phys. Rev. E 67, 067102 (2003)

    Article  ADS  Google Scholar 

  9. A. M. Ferrenberg, R. H. Swendsen: Phys. Rev. Lett. 61, 2635 (1988); A. M. Ferrenberg, R. H. Swendsen: Phys. Rev. Lett. 63, 1195 (1989)

    Google Scholar 

  10. P. M. C. de Oliveira, T. J. P. Penna, H. J. Herrmann: Braz. J. Phys. 26, 677 (1996); P. M. C. de Oliveira, T. J. P. Penna, H. J. Herrmann: Eur. Phys. J. B 1, 205 (1998)

    Google Scholar 

  11. J.-S. Wang: Eur. Phys. J. B 8, 287 (1998)

    Article  ADS  Google Scholar 

  12. J. Lee: Phys. Rev. Lett. 71, 211 (1993)

    Article  ADS  Google Scholar 

  13. A. R. Lima, P. M. C. de Oliveira, T. J. P. Penna: J. Stat. Phys. 99, 691 (2000)

    Article  MATH  Google Scholar 

  14. B. A. Berg, T. Neuhaus: Phys. Rev. Lett. 68, 9 (1992)

    Article  ADS  Google Scholar 

  15. B. A. Berg, T. Celik: Phys. Rev. Lett. 69, 2292 (1992)

    Article  ADS  Google Scholar 

  16. B. A. Berg, U. Hansmann, T. Neuhaus: Phys. Rev. B 47, 497 (1993)

    Article  ADS  Google Scholar 

  17. B. A. Berg: Nucl. Phys. (Proc. Suppl.) 63, 982 (1998)

    Article  ADS  Google Scholar 

  18. B. A. Berg, T. Celik, U. Hansmann: Europhys. Lett. 22, 63 (1993)

    Article  ADS  Google Scholar 

  19. B. A. Berg, U. Hansmann: Eur. Phys. J. B 6, 395 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  20. U. Hansmann: Phys. Rev. B 56, 6200 (1997)

    ADS  Google Scholar 

  21. U. Hansmann, Y. Okamoto: Phys. Rev. E 54, 5863 (1996)

    Article  ADS  Google Scholar 

  22. W. Janke, B. A. Berg, A. Billoire: Comput. Phys. Commun. 121–122, 176 (1999)

    Article  Google Scholar 

  23. F. Y. Wu: Rev. Mod. Phys. 54, 235 (1982)

    Article  ADS  Google Scholar 

  24. P. D. Beale: Phys. Rev. Lett. 76, 78 (1996)

    Article  ADS  Google Scholar 

  25. M. S. S. Challa, D. P. Landau, K. Binder: Phys. Rev. B 34, 1841 (1986)

    Article  ADS  Google Scholar 

  26. B. A. Berg, T. Neuhaus: Phys. Lett. B 267, 249 (1991)

    Article  ADS  Google Scholar 

  27. W. Janke: Int. J. Mod. Phys. C 3, 375 (1992)

    Article  Google Scholar 

  28. W. Janke: Physica A 254, 164 (1998)

    Article  Google Scholar 

  29. W. Janke, S. Kappler: Phys. Rev. Lett. 74, 212 (1995)

    Article  ADS  Google Scholar 

  30. K. Binder, A. P. Young: Rev. Mod. Phys. 58, 801 (1986)

    Article  ADS  Google Scholar 

  31. S. F. Edwards, P. W. Anderson: J. Phys. F Metal Phys. 5 965 (1975)

    Google Scholar 

  32. Z. Chen: Unpublished

    Google Scholar 

  33. C. Yamaguchi, Y. Okabe: J. Phys. A 34, 8781 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Y. Okabe, Y. Tomita, C. Yamaguchi: Comput. Phys. Commun. 146, 63 (2002)

    Article  MATH  ADS  Google Scholar 

  35. Q. L. Yan, R. Faller, J. J. de Pablo: J. Chem. Phys. 116, 8745 (2002)

    Article  ADS  Google Scholar 

  36. T. S. Jain, J. J. de Pablo: J. Chem. Phys. 116, 7238 (2002)

    Article  ADS  Google Scholar 

  37. F. Rampf, W. Paul, K. Binder: Europhys. Lett. 70, 628 (2005)

    Article  ADS  Google Scholar 

  38. N. Rathore, J. J. de Pablo: J. Chem. Phys. 116, 7225 (2002)

    Article  ADS  Google Scholar 

  39. N. Rathore, T. A. Knotts, J. J. de Pablo: J. Chem. Phys. 118, 4285 (2003)

    Article  ADS  Google Scholar 

  40. M. A. de Menezes, A. R. Lima: Phys. Lett. A 323, 428 (2003)

    MATH  Google Scholar 

  41. V. Mustonen, R. Rajesh: J. Phys. A 36, 6651 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Troyer, S. Wessel, F. Alet: Phys. Rev. Lett. 90, 120201 (2003)

    Article  ADS  Google Scholar 

  43. P. N. Vorontsov-Velyaminov, A. P. Lyubartsev: J. Phys. A 36, 685 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. W. Koller, A. Prüll, H. G. Evertz, W. von der Linden: Phys. Rev. B 67, 104432 (2003)

    Article  ADS  Google Scholar 

  45. C. Zhou, T. C. Schulthess, S. Torbrügge, D. P. Landau: Phys. Rev. Lett. 96, 120201 (2006)

    Google Scholar 

  46. H.-K. Lee, Y. Okabe, D. P. Landau: Comput. Phys. Commun. 175, 36 (2006)

    Google Scholar 

  47. S. Trebst, D. A. Huse, M. Troyer: Phys. Rev. E 70, 046701 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Landau, D.P. (2008). A Different Approach to Monte Carlo Simulations in Systems with Complex Free-Energy Landscapes. In: Rugged Free Energy Landscapes. Lecture Notes in Physics, vol 736. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74029-2_13

Download citation

Publish with us

Policies and ethics