Skip to main content

Robotics for Agricultural Systems

  • Conference paper
Mechatronics and Machine Vision in Practice

Abstract

In the last few years robotics has been increasingly adopted in agriculture to improve productivity and efficiency. Most of the efforts in this research area have been devoted to fresh market fruit and vegetable harvesting tasks, which are generally, time consuming, tiring, and particularly demanding. For many crops, harvest labor accounts for as much as one-half to two-thirds of the total labor costs. Moreover, harvesting is expected to be automated due to a decrease in the farmer population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arima, S., Kondo, N. and Monta, M. (2004). Strawberry Harvesting Robot on Table-top Culture. ASAE Paper no. 04-3089. St. Joseph, Mich.: ASAE.

    Google Scholar 

  2. Benson, E., Reid, J., Zhang, Q. (2003). Machine Vision–Based Guidance System for an Agricultural Small-Grain Harvester. Trans. of the ASAE, Vol. 46(4): 1255–1264.

    Google Scholar 

  3. Brown, G.K. (2002). Mechanical harvesting systems for the Florida citrus juice industry. ASAE Paper no. 02-1108. St. Joseph, Mich.: ASAE.

    Google Scholar 

  4. Chi, Y.T., and Ling, P. (2004). Fast Fruit Identification for Robot Tomato Picker. ASAE Paper no. 04-3083. St. Joseph, Mich.: ASAE.

    Google Scholar 

  5. Dobrusin, Y., Edan, Y., Grinshpun J., Peiper U.M., and Hetzroni A. (1992). Real-time image processing for robotic melon harvesting. ASAE Paper No. 92-3515. St. Joseph, Mich.: ASAE.

    Google Scholar 

  6. Doeney D., Gilles D.K., and Slaughter D. (2003). Ground based vision identification for weed mapping using DPGS. ASAE Paper no. 03-1005. St. Joseph, Mich.: ASAE.

    Google Scholar 

  7. Edan T., Rogozin D., Flash T., and Miles G. E. (2000). Robotic Melon Harvesting. IEEE Trans. on Robotics and Automation, Vol. 16 (6): 831–834.

    Article  Google Scholar 

  8. Foglia, M., and Reina, G. (2006), “Agricultural Robot for Radicchio Harvesting,” Journal of Field Robotics, Vol. 23, Nos 6/7.

    Google Scholar 

  9. Hannan, M.W., and Burks, T. (2004). Current Developments in Automated Citrus Harvesting. ASAE Paper no. 04-3087. St. Joseph, Mich.: ASAE.

    Google Scholar 

  10. Humburg, D.S. and Reid, J.F. (1992). Field performance of machine vision for the selective harvest of green asparagus. Trans ASAE, 100(2): 81-92.

    Google Scholar 

  11. Jeon, H. Y., L.F. Tian and T. Grift. (2005). Developmnent of an individual weed treatment system using a robotic arm. ASAE Paper no. 05-1004. St. Joseph, Mich.: ASAE.

    Google Scholar 

  12. Kondo, N., and Ting, K. (1998). Robotics for Bioproduction Systems. St. Joseph, Mi. ASAE.

    Google Scholar 

  13. Ling, P., Ehsani, R., Ting, K., Yu-Tseh Chi, Ramalingam, N., Klingman, M., Draper, C. (2004). Sensing and End-Effector for a Robotic Tomato Harvester. ASAE Paper no. 04-3088. St. Joseph, Mich.: ASAE.

    Google Scholar 

  14. Milella, A., Reina, G., Foglia, M. (2006). Computer Vision Technology for Agricultural Robotics. Sensor Review, Vol. 26, N° 4.

    Google Scholar 

  15. Monta, M., Kondo, N., Shibano, Y., Mohri, K., Yamashita, J., and Fujiura, T. (1992). Agricultural Robots (3): Grape Berry Thinning Hand. ASAE Paper No. 92-3519. St. Joseph, Mich.: ASAE.

    Google Scholar 

  16. Monta, M., Kondo, N., and Ting, K.C. (1998). End-effector for Tomato Harvesting Robot. Artificial Intelligence Review. 12:11–25.

    Article  Google Scholar 

  17. Murakami, N., Inoue, K., and Otsuka, K. (1995). Selective Harvesting Robot for Cabbages. In Proc. of Int. Symposium of Automation and Robotics in Bio-production and Processing. JSAM, 2: 24–31.

    Google Scholar 

  18. Nagata, M., and Cao, Q. (1998). Study on Grade Judgment of Fruit Vegetables Using Machine Vision. Japan Agricultural Research Quarterly. 32 (4).

    Google Scholar 

  19. Peterson, D. L., Whiting, D., and Wolford, S. D. (2003a). Fresh–Market Quality Tree Fruit Harvester Part I: Sweet Cherry. Applied Engineering in Agriculture. 19(5): 539–543.

    Google Scholar 

  20. Peterson, D. L. and Wolford, D. (2003b). Fresh–Market Quality Tree Fruit Harvester Part II: Apples. Applied Engineering in Agriculture. 19(5): 545–548.

    Google Scholar 

  21. Pilarski, T., Happold, M., Pangels, H., Ollis, M., Fitzpatrick, K., and Stentz, A. (1999). The Demeter System for Automated Harvesting. In Proc. of the 8th Int. Topical Meeting on Robotics and Remote Systems.

    Google Scholar 

  22. Sciavicco, L., and Siciliano B.. (2000). Modelling and Control of Robot Manipulators. London, Springer-Verlag.

    MATH  Google Scholar 

  23. Van Henten, E.J., Hemming, J., Van Tuyl, B.A.J., Kornet J.G., Meuleman J., Bontsema J., Van Os E.A. (2002). An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots, 13, 241–258.

    Article  MATH  Google Scholar 

  24. Xu S., Freund, R., and Sun, J. (2003). Solution Methodologies for the Smallest Enclosing Circle Problem. Journal of Computational Optimization and Applications, 25, 283–292.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Foglia, M., Gentile, A., Reina, G. (2008). Robotics for Agricultural Systems. In: Billingsley, J., Bradbeer, R. (eds) Mechatronics and Machine Vision in Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74027-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74027-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74026-1

  • Online ISBN: 978-3-540-74027-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics