Skip to main content

Versatile Galactose Genetic Switch

  • Chapter
Galactose Regulon of Yeast
  • 691 Accesses

In eucaryotes, three distinct species of RNA polymerases (RNA Pol) have been identified while prokaryotes and archaea have only one RNA polymerase. In eukaryotes, RNA PolI, transcribes the large rRNA precursor that is processed leading to the production of 28 S, 18 S and 5.8 S rRNAs. RNA PolII, transcribes heterogeneous nuclear RNAs (hnRNAs) and small nuclear RNAs (sn RNAS). hnRNAs are processed to mature mRNA, which requires snRNAs. RNA PolIII transcribes 5 S rRNA and tRNAs. The identity of these three RNA polymerases has been confirmed by molecular genetic and biochemical analysis. Although these enzymes share a common property of transcribing DNA, they lack the ability to identify the transcription initiation sites for which they depend on additional proteins. As expected, the promoters of genes transcribed by these RNA polymerases also have unique features.

Of the three polymerases, PolII has attracted considerable attention owing to the fact that its activity is highly regulated. The fundamental question is: How does the transcriptional machinery direct the RNA PolII to accurately transcribe the diverse set of genes depending upon the physiological need? In general, promoters served by the RNA PolII have a common architecture consisting of core elements required for the promoter function and for the assembly and orientation of the pre-initiation complex. The most significant structural elements are the TATA sequences located 25 nucleotides upstream of the transcription initiation site. The transcription initiation site is generally pyrimidine-rich. In addition, the promoters contain regulatory sequences that govern the expression status by interacting with specific transcriptional regulators. GAL promoter is an archetypical PolII promoter that is turned OFF by glucose and ON by galactose. We shall focus on how Gal4p, the DNA-binding transcriptional activator, activates PolII to transcribe GAL genes in response to the inducer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams BG (1972) Induction of galactokinase in Saccharomyces cerevisiae: kinetics of induction and glucose effects. J Bacteriol 111:308–315

    PubMed  CAS  Google Scholar 

  • Biggar SR, Crabtree GR (2001) Cell signaling can direct either binary or graded transcriptional responses. EMBO J 20:3167–3176

    Article  PubMed  CAS  Google Scholar 

  • Boeger H, Bushnell DA, Davis R, Griesenbeck J, Lorch Y, Strattan JS, Westover KD, Kornberg RD (2005) Structural basis of eukaryotic transcription. FEBS Lett 579:899–903

    Article  PubMed  CAS  Google Scholar 

  • Bryant GO, Ptashne M (2003) Independent recruitment in vivo by Gal4 of two complexes required for transcription. Mol Cell 11:1301–1309

    Article  PubMed  CAS  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  PubMed  CAS  Google Scholar 

  • Ding WV, Johnston A (1997) The DNA-binding and activation domain of Gal4p are sufficient for conveying its regulatory signals. Mol Cell Biol 17:2538–2459

    PubMed  CAS  Google Scholar 

  • Ferrel Jr, JE (1996) Triping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21:460–466

    Article  Google Scholar 

  • Frank CP, Holstege et al (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728

    Article  Google Scholar 

  • Gancedo JM (1992) Carbon catabolite repression in yeast. Eur J Biochem 206:297–313

    Article  PubMed  CAS  Google Scholar 

  • Gregar IH, Proudfoot NJ (1998) Poly(A) signals both transcriptional termination and initiation between the tandem GAL7 and GAL10 genes of Saccharomyces cerevisiae. EMBO J 17:4771–4779

    Article  Google Scholar 

  • Griggs DW, Johnston M (1991) Regulated expression of the GAL4 activator gene in yeast provides a sensitive switch for glucose repression. Proc Nat Acad Sci 88:8597–8601

    Article  PubMed  CAS  Google Scholar 

  • Himmelfarb H, Pearlberg JJ, Last DH, Ptashne M (1990) GAL11P: a yeast mutation that potentiates the effect of the weak GAL4 derived activators. Cell 63:1299–1309

    Article  PubMed  CAS  Google Scholar 

  • Johnston M (1999) Feasting, fasting, and fermenting. Trends Genet 15:29–33

    Article  PubMed  CAS  Google Scholar 

  • Klein CJ, Olsson L, Nielsen J (1998) Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions. Microbiology 144:13–24

    Article  PubMed  CAS  Google Scholar 

  • Kornberg RD (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30:235–239

    Article  PubMed  CAS  Google Scholar 

  • Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome: fundamental particle of the eukaryote chromosome. Cell 98:285–294

    Article  PubMed  CAS  Google Scholar 

  • Lakshminarasimhan A, Bhat PJ (2005) Replacement of a conserved tyrosine by tryptophan in Gal3p of Saccharomyces cerevisiae reduces constitutive activity: implication for signal transduction in the GAL regulon. Mol Gen Genom 274:384–393

    Article  CAS  Google Scholar 

  • Melcher K, Xu HE (2001) Gal80-Gal80 interaction on adjacent Gal4p-binding sites is required for complete GAL gene repression. EMBO J 20:841–851

    Article  PubMed  CAS  Google Scholar 

  • Muratani M, Kung C, Shokat KM, Tansey WP (2005) The F-box protein DSG1/MDM30 is a transcriptional co-activator that stimulates Gal4 turnover and co-transcriptional mRNA processing. Cell 120:887–899

    Article  PubMed  CAS  Google Scholar 

  • Mylin LM, Bhat PJ, Hopper JE (1989) Regulated phosphorylation and dephosphorylation of GAL4, a transcriptional activator. Genes Dev 3:1157–1165

    Article  PubMed  CAS  Google Scholar 

  • Nehlin UO, Carlberg M, Ronne H (1991) Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. The EMBO J 10:3373–3377

    CAS  Google Scholar 

  • Nogi Y, Fukasawa T (1983) A novel mutation that affects utilization of galactose in Saccharomyces cerevisiae. Curr Genet 195:115–120

    Google Scholar 

  • Novick A, Weiner M (1957) Enzyme induction as an all or none phenomenon. Proc Natl Acad Sci USA 43:553–566

    Article  PubMed  CAS  Google Scholar 

  • Novick A, Weiner M (1957) Enzyme induction as an all or none phenomenon Proc. Natl. Acad. Sci. USA 43:553–566

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M (2003) Regulated recruitment and co-operativity in the design of biological regulatory systems. Phil Trans R Soc Lond A 361:1223–1234

    Article  CAS  Google Scholar 

  • Reece RJ (2000) Molecular basis of nutrient-controlled gene expression in Saccharomyces cerevisiae. CMLS Cell Mol Life Sci 57:1161–1171

    Article  CAS  Google Scholar 

  • Reece RJ, Platt A (1997) Signalling activation and repression of RNA polymerase II transcription in yeast Bioassays 19:1001–1009

    Article  CAS  Google Scholar 

  • Rohde JR, Trinh J, Sadowski I (2000) Multiple signals regulate transcription in yeast. Mol Cell Biol 20:3880–3886

    Article  PubMed  CAS  Google Scholar 

  • Ronne H (1995) Glucose repression in fungi. Trends Genet 11:12–17

    Article  PubMed  CAS  Google Scholar 

  • Rossi FM, Kringstein AM, Spicher A, Guicherit OM, Blau HM (2000) Transcriptional control: rheostat converted to ON/OFF switch. Mol Cell 6:723–728

    Article  PubMed  CAS  Google Scholar 

  • Sadowski I, Costa C, Dhanawansa R (1996) Phosphorylation of Gal4p at a single C-terminal residue is necessary for galactose inducible transcription. Mol Cell Biol 16:4879–4887

    PubMed  CAS  Google Scholar 

  • Sadowski I, Niedbala D, Wood K, Ptashne M (1991) GAL4 is phosphorylated as a consequence of transcriptional activation. Proc Nat Acad Sci USA 88:10510–10514

    Article  PubMed  CAS  Google Scholar 

  • Sellick CA, Reece RJ (2005) Eucaryotic transcription factors as direct nutrient sensors. Trends Biochem Sci 30:405–412

    Article  PubMed  CAS  Google Scholar 

  • St. John TP, Davis RW (1981) The organization and transcription of galactose gene cluster of Saccharomyces. J Mol Biol 152:285–315

    Article  Google Scholar 

  • Thomas MC, Miang CC (2006) The general transcription machinery and general co-factors. Crit Rev Biochem Mol Biol 41:105–178

    Article  PubMed  CAS  Google Scholar 

  • Traven A, Jelicic B, Sopta M (2006) Yeast GAL4: a transcriptional paradigm revisited. EMBO Rep 7:496–499

    Article  PubMed  CAS  Google Scholar 

  • Traven A, Jelicic B, Sopta M (2006) Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep 7:496–499

    Article  PubMed  CAS  Google Scholar 

  • Tsonis PA (2003) Anatomy of gene regulation. Three-dimensional structural analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Vashee S, Xu H, Johnston SA, Kodadek T (1993) How do Zn2 Cys6 proteins distinguish between similar upstream activation sites? J Biol Chem 268:24699–24706

    PubMed  CAS  Google Scholar 

  • Verma M, Bhat PJ, Venkatesh KV (2005) Steady state analysis of glucose repression reveals hirarchical expression of protein under Mig1p control in Saccharomyces cerevisiae. Biochem J 288:843–849

    Google Scholar 

  • Xu HE, Kodadek T, Johnston, SA (1995) A single GAL4 dimer can maximally activate transcription under physiological conditions Proc Nat Acad Sci USA 92:7677–7680

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Versatile Galactose Genetic Switch. In: Galactose Regulon of Yeast. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74015-5_7

Download citation

Publish with us

Policies and ethics