Skip to main content

Molecular Genetics of GAL Regulon

  • Chapter
Galactose Regulon of Yeast
  • 706 Accesses

In general, a replica of a living or a non-living entity is called a clone. In biology, a clone refers to a progeny genetically identical to its parents. Clones are produced during vegetative or mitotic or asexual reproduction. Occasionally, during asexual reproduction, genetic variants arise at a frequency of 10−6 due to errors in copying the genetic information. Such variants are not the clone of the parent cell. In singlecelled organisms like yeast, such variants can be isolated using genetic screens or selection, and this process is called “cloning of an organism”. We have learned how to clone yeast strains that exhibit different phenotypes. Cloning multicellular organisms entails different approaches (Box 5.1.1). By definition, descendents of sexual reproduction are not clones because they are not genetically identical to the parents. This definition breaks down when one considers the haploid spores of a homo-diploid yeast cell. Here, the haploid spores produced through sexual reproduction are genetically identical to one another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams A, Gattschling DE, Kaiser, CA, Stearns T (1998) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Ansari AZ, Reece RJ, Ptashne M (1998) A transcriptional activating region with two contrasting modes of protein interaction. Proc Nat Acad Sci USA 95:13543–13548

    Article  PubMed  CAS  Google Scholar 

  • Bajwa W, Torchia TE, Hopper JE (1988) Yeast regulatory gene GAL3: carbon regulation, UASg elements common with GAL1, 2, 7, 10, 80 and MEL1; encoded protein is strikingly similar to yeast and E. coli galactokinases. Mol Cell Biol 8:3439–3447

    PubMed  CAS  Google Scholar 

  • Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109

    Article  PubMed  CAS  Google Scholar 

  • Berg P (1991) Reverse genetics: Its origin and prospects. Biotechnology 9:342–344

    Article  PubMed  CAS  Google Scholar 

  • Bhat PJ, Hopper JE (1991) The mechanism of inducer formation in Gal3 mutants of the yeast galactose system is independent of normal galactose metabolism and mitochondrial respiratory function. Genetics 128:133–139

    Google Scholar 

  • Bhat PJ, Oh D, Hopper JE (1990) Analysis of the Gal3 signal-transduction pathway activating Gal4 protein-dependent transcription in Saccharomyces cerevisiae. Genetics 125:281–291

    PubMed  CAS  Google Scholar 

  • Botstein D, Davis RW (1982) Principles and practice of recombinant DNA research with yeast. In: Strathern JN, Hicks JB (eds) The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 607–636

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Bram RJ, Kornberg RD (1985) Specific protein binding to far upstream activating sequences in polymerase II promoters. Proc Nat Acad Sci USA 82:43–47

    Article  PubMed  CAS  Google Scholar 

  • Brent R, Ptashne M (1985) A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43:729–735

    Article  PubMed  CAS  Google Scholar 

  • Carbon J (1993) Genes, replicators, and centromeres: the first artificial chromosomes. In: Hall MN, Linders P (eds) The early days of yeast genetics. Cold Spring Harbor Laboratory Press, New York, pp 375–390

    Google Scholar 

  • Chasman D, Kornberg, RD (1990) GAL4 protein: purification and association with GAL80 protein and conserved domain structure. Mol Cell Biol 10:2916–2923

    PubMed  CAS  Google Scholar 

  • Citron BA, Feiss M, Donelson JE (1979) expression of the yeast galactokinase gene in E. coli. Gene 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Cohen SN, Chang ACY, Hsu L (1972) Nonchromosomal antibiotic resistance in Bacteria: genetic transformation of E. coli by R-factor DNA. Proc Nat Acad Sci USA 69:2110–2114

    Article  PubMed  CAS  Google Scholar 

  • Collins FS (1992) Cystic fibrosis: molecular biology and therapeutic implications. Science 256:774–779

    Article  PubMed  CAS  Google Scholar 

  • Davis RH (2003) The microbial models of molecular biology. From genes to genomes. Oxford University Press

    Google Scholar 

  • Fried M, Crothers DM (1981) Equilibra and kinetics of lac repressor operator interactions by polyacrylamide gel electrophoresis of protein DNA complexes. Nucl Acids Res 9:6506–6525

    Article  Google Scholar 

  • Garner M, Revzin A (1981) A gel electrophoresis method for quantifying the binding of protein-to-specific DNA regions. Application to the components of the E. coli lactose operon system. Nucl Acids Res 9:3047–3060

    Article  PubMed  CAS  Google Scholar 

  • Giniger E, Varnum SM, Ptashne M (1985) Specific DNA binding of the GAL4: a positive regulatory protein of yeast. Cell 40:764–774

    Article  Google Scholar 

  • Goldberg RF (1974) Autogenous expression of gene expression. Science 183:810–816

    Article  Google Scholar 

  • Guarente L, Yocum RR, Clifford P (1982) A GAL10-CYC1 yeast hybrid promoter identifies the GAL4 regulatory region as an upstream site. Proc Nat Acad Sci USA 79:7410–7414

    Article  PubMed  CAS  Google Scholar 

  • Hall BD (1993) Starting to probe for yeast genes. In: Hall MN, Linders P (eds) The early days of yeast genetics. Cold Spring Harbor Laboratory Press, New York, pp 391–404

    Google Scholar 

  • Han Ying, Kodadek T (2000) Peptides selected to bind the GAL80 repressor are potent transcriptional activation domains in yeast. J Biol Chem 275:14979–14984

    Article  Google Scholar 

  • Hicks JB, Hinnen A, Fink GR (1980) Properties of yeast transformation. Cold Spring Harbor Symp Quant Biol 43:1305–1313

    Google Scholar 

  • Hishimoto H, Kikuchi Y, Nogi Y, Fukasawa T (1983) Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae. Mol Gen 191:31–38

    Article  Google Scholar 

  • Igarashi M, Segawa T, Nogi Y, Suzuki Y, Fukasawa T (1987) Autogenous regulation of the Saccharomyces cerevisiae regulatory gene GAL80. Mol Genet 207:273–279

    Article  CAS  Google Scholar 

  • Johnston M (1987) A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 51:458–476

    PubMed  CAS  Google Scholar 

  • Johnston M (1987) Genetic evidence that zinc is an essential co-factor in the DNA-binding domain of Gal4p. Nature 328:353–355

    Article  PubMed  CAS  Google Scholar 

  • Johnston M, Davis RW (1984) Sequences that regulate the divergent GAL1–10 promoter in Saccharomyces cerevisiae. Mol Cell Biol 4:1440–1448

    PubMed  CAS  Google Scholar 

  • Johnston M, Dover J (1987) Mutations that inactivate a yeast transcriptional regulatory protein cluster in an evolutionary conserved domain. Proc Nat Acad Sci USA 84:2401–2405

    Article  PubMed  CAS  Google Scholar 

  • Johnston M, Dover J (1988) Mutational analysis of the GAL4 encoded transcriptional activator protein of Saccharomyces cerevisiae. Genetics 120:63–74

    PubMed  CAS  Google Scholar 

  • Johnston SA, Hopper JE (1982) Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc Nat Acad Sci USA 79:6971–6975

    Article  PubMed  CAS  Google Scholar 

  • Johnston SA, Salmeron JM, Dincher Jr SS (1987) Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 50:143–146

    Article  PubMed  CAS  Google Scholar 

  • Johnston SA, Zavortink MJ, Hopper JE, Debouck C, Hopper JE (1986) Functional domains of the yeast regulatory protein GAL4. Proc Nat Acad Sci USA 83:6553–6557

    Article  PubMed  CAS  Google Scholar 

  • Keegan L, Gill G, Ptashne M (1986) Separation of DNA binding from the transcription activating function of a eukaryotic regulatory protein. Science 231:699–703

    Article  PubMed  CAS  Google Scholar 

  • Knowlton et al (1985) A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 318:380–382

    Article  PubMed  CAS  Google Scholar 

  • Laughon A, Gesteland RF (1982) Isolation and preliminary characterization of the GAL4 gene, a positive regulator of transcription in yeast. Proc Nat Acad Sci USA 79:6827–6831

    Article  PubMed  CAS  Google Scholar 

  • Laughon A, Gesteland RF (1984) Primary structure of the Saccharomyces cerevisiae GAL4 gene. Mol Cell Biol 4:260–267

    PubMed  CAS  Google Scholar 

  • Leppert MF (1990) Gene mapping and other tools for discovery. Epilepsia 31 (Suppl 3):S11–S18

    Article  PubMed  CAS  Google Scholar 

  • Lohr D, Hopper JE (1985) The relationship of regulatory proteins and DNAse I hypersensitive sites in yeast GAL1–10 genes. Nucleic Acids Res 13(23):8409–8423

    Article  PubMed  CAS  Google Scholar 

  • Lohr D, Venkov P, Zlatanova J (1995) Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB J 9:777–786

    PubMed  CAS  Google Scholar 

  • Ma J, Ptashne M (1987) The carboxy terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50:137–142

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Ptashne M (1988) Converting a eukaryotic transcriptional inhibitor into an activator. Cell 55:443–446

    Article  PubMed  CAS  Google Scholar 

  • Marmorstein R, Carey M, Ptashne M, Harrison C (1992) DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356:408–414

    Article  PubMed  CAS  Google Scholar 

  • Mayers J, Walker-Jonah A, Hollenberg CP (1991) Galactokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae. Mol Cell Biol 11:5454–5461

    Google Scholar 

  • Melcher K (1996) Galactose metabolism in Saccharomyces cerevisiae: a paradigm for eukaryotic gene regulation. In: Zimmermann K, Entian KD (eds) Yeast sugar metabolism. Technomic Publishing Co., Lancaster, PA

    Google Scholar 

  • Mount DW (2001) Bioinformatics: Sequence and genome analysis. Cold Spring Harbor Laboratory Press. New York

    Google Scholar 

  • Nogi Y, Fukasawa T (1984) Nucleotide sequence of the yeast regulatory gene GAL80. Nucl Acid Res 12:9287–9298

    Article  CAS  Google Scholar 

  • Nogi Y, Shimada H, Matsuzuki Y, Hashimoto H, Fukasawa T (1984) Regulation of expression of the galactose gene cluster in Saccharomyces cerevisiae. Mol Genet 195:29–34

    Article  CAS  Google Scholar 

  • Oh D, Hopper JE (1990) Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible. Mol Cell Biol 10:1415–1422

    PubMed  CAS  Google Scholar 

  • Ott J (1991) Analysis of human genetic linkage. The John Hopkins University Press, Baltimore

    Google Scholar 

  • Parthun M, Jaehning JA (1992) A transcriptionally active form of GAL4 is phosphorylated and associated with GAL80. J Biol Chem 12: 4981–4987

    CAS  Google Scholar 

  • Post-Beittenmiller MA, Hamilton RW, Hopper JE (1984) Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol Cell Biol 4:1238–1245

    PubMed  CAS  Google Scholar 

  • Ptashne M (1992) A genetic switch: phage lambda and higher organisms, 2nd edn. Cell Press & Blackwell Scientific Publications, Cambridge

    Google Scholar 

  • Riggs AD, Suzuki H, Bourgeosis S (1970) Lac repressor operator interactions I. Equilibrium studies. J Mol Biol 48:67–83

    Article  PubMed  CAS  Google Scholar 

  • Salmeron JM Jr, Leuther KK, Johnston SA (1990) GAL4 mutations that separate the transcriptional activation and GAL80 interactive functions of the yeast GAL4 protein. Genetics 125(1):21–27

    PubMed  CAS  Google Scholar 

  • Schmiegelow et al (1986) Linkage between the loci for cystic fibrosis and paraoxonase. Clin Genet 29:374–377

    PubMed  CAS  Google Scholar 

  • Segal S (1998) Galactosemia today: The enigma and the challenge J Inner Metab Dis 21:455–471

    Article  CAS  Google Scholar 

  • Selleck SB, Majors JE (1987) In vivo DNA-binding properties of a yeast transcription activator. Mol Cell Biol 7:3260–3267

    PubMed  CAS  Google Scholar 

  • Shimada H, Fukasawa T (1985) Controlled transcription of the yeast regulatory gene GAL80. Gene 39:1–9

    Article  PubMed  CAS  Google Scholar 

  • St. John TP, Davis RW (1979) Isolation of galactose-inducible DNA sequences from Saccharomyces cerevisiae by differential plaque filter hybridization. Cell 16:443–452

    Article  PubMed  CAS  Google Scholar 

  • St. John TP, Davis RW (1981) The organization and transcription of the galactose gene cluster of Saccharomyces. J Mol Biol 152:285–315

    Article  Google Scholar 

  • Stambolian D et al (1995) Cloning of the galactokinase cDNA and identification of mutations in two families with cataracts. Nature Genetics 10:307–312

    Article  PubMed  CAS  Google Scholar 

  • Struhl K (1983) The new yeast genetics. Nature 304:391–397

    Article  Google Scholar 

  • Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Nat Acad Sci USA 76:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Szkutnicka K, Tschoop JF, Andrews L, Cirillo VP (1989) Sequence and structure of the yeast galactose transporter. J Bacteriol 171:4486–4493

    PubMed  CAS  Google Scholar 

  • Torchia TE, Hamilton RW, Cano CL, Hopper JE (1984) Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol Cell Biol 4:1521–1527

    PubMed  CAS  Google Scholar 

  • Torchia TE, Hopper JE (1986) Genetic and molecular analysis of the GAL3 gene in the expression of the galactose/ melibiose regulon of Saccharomyces cerevisiae. Genetics 113:229–246

    PubMed  CAS  Google Scholar 

  • Tsui Lap-Chee et al (1985) Cystic fibrosis locus defined by a genetically linked polymorphic DNA marker. Science 230:1054–1057

    Article  Google Scholar 

  • Vashee S, Xu H, Johnston SA, Kodadek T (1993) How do “Zn2 Cys” proteins distinguish between similar upstream activation sites. J Biol Chem 268:24699–24706

    PubMed  CAS  Google Scholar 

  • West Jr RW, Yocum RR, Ptashne M (1984) Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: location and function of the upstream activating sequence UASg. Mol Cell Biol 4:2467–2478

    PubMed  CAS  Google Scholar 

  • White R, Laiouei J (1988) Chromosomal mapping with DNA markers. Scientific American 258:20–28

    Article  Google Scholar 

  • Wilmut I et al. (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  PubMed  CAS  Google Scholar 

  • Yocum RR, Hanley S, West Jr R, Ptashne M (1984) Use of lac Z fusions to delimit regulatory elements of the inducible divergent GAL1-10 promoter in Saccharomyces cerevisiae. Mol Cell Biol 4:1985–1988

    PubMed  CAS  Google Scholar 

  • Yun S, Hiraoka Y, Nishizava M, Takio K, Titani K, Nogi Y, Fukasawa T (1991) Purification and characterization of the yeast-negative regulatory protein Gal80. J Biol Chem 266:693–697

    PubMed  CAS  Google Scholar 

  • Zheng W, Eric Xu H, Johnston S (1997) The cystine-peptidase bleomycin hydrolase is a member of the galactose regulon in yeast. J Biol Chem 272:30350–30355

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Molecular Genetics of GAL Regulon. In: Galactose Regulon of Yeast. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74015-5_5

Download citation

Publish with us

Policies and ethics