Food Web Interactions and Ecosystem Processes

  • A. Janssen
  • M. W. Sabelis
Part of the Ecological Studies book series (ECOLSTUD, volume 173)


The effects of higher trophic levels such as herbivores and predators are usually not considered in studies of biodiversity and ecosystem processes. However, plants and organisms of higher trophic levels interact in many different ways, resulting in effects of plants on biodiversity of higher trophic levels as well as effects of higher trophic levels on plant biomass and diversity. We review the effects of higher trophic levels on plant biomass, plant diversity and ecosystem processes. Food web interactions such as apparent competition, omnivory, intraguild predation, interactions among plants, indirect plant defences and behavioural effects are important for ecosystem processes. Given the large variety of food web structures, generalizing rules relating food web interactions to ecosystem processes probably do not exist. Moreover, such predictions will also be impeded by the occurrence of multiple steady states in ecological systems.


Trophic Level Ecosystem Process High Trophic Level Ecosystem Functioning Plant Species Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal AA, Klein CN (2000) What omnivores eat: direct effects of induced plant resistance on herbivores and indirect consequences for diet selection by omnivores. J Anim Ecol 69: 525 - 535CrossRefGoogle Scholar
  2. Agrawal AA, Kobayashi C, Thaler JS (1999) Influence of prey availability and induced host-plant resistance on omnivory by western flower thrips. Ecology 80: 518 - 523CrossRefGoogle Scholar
  3. Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivoryinduced volatiles elicit defense genes in lima bean leaves. Nature 406: 512 - 515PubMedCrossRefGoogle Scholar
  4. Arimura G, Ozawa R, Horiuchi J, Nishioka T, Takabayashi J (2001) Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochem Syst Ecol 29: 1049 - 1061CrossRefGoogle Scholar
  5. Armstrong RA, McGehee R (1980) Competitive exclusion.Am Nat 115: 151 - 170Google Scholar
  6. Augner M (1994) Should a plant always signal its defence against herbivores? Oikos 70: 322 - 332CrossRefGoogle Scholar
  7. Augner M, Fagerström T, Tuomi J (1991) Competition, defence and games between plants. Behav Ecol Sociobiol 29: 231 - 234CrossRefGoogle Scholar
  8. Beattie AJ (1985) The evolutionary ecology of ant–plant mutualisms. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  9. Bentley BL (1977) Extra-floral nectaries and protection by pugnacious bodyguards. Annu Rev Ecol Syst 8: 407 - 427CrossRefGoogle Scholar
  10. Bond EM, Chase JM (2002) Biodiversity and ecosystem functioning at local and regional spatial scales. Ecol Lett 5: 467 - 470CrossRefGoogle Scholar
  11. Bradford MA, Jones TH, Bardgett RD, Black HIJ, Boag B, Bonkowski M, Cook R, Eggers T, Gange AC, Grayston SJ, Kandeler E, McCaig AE, Newington JE, Prosser JI, Setala H, Staddon PL, Tordoff GM, Tscherko D, Lawton JH (2002) Impacts of soil faunal community composition on model grassland ecosystems. Science 298: 615 - 618PubMedCrossRefGoogle Scholar
  12. Brown VK, Gange AC (1992) Secondary plant succession–how is it modified by insect herbivory? Vegetatio 101: 3 - 13CrossRefGoogle Scholar
  13. Bruin J, Dicke M (2001) Chemical information transfer between wounded and unwounded plants: backing up the future. Biochem Syst Ecol 29: 1103 - 1113CrossRefGoogle Scholar
  14. Bruin J, Sabelis MW (2001) Meta-analysis of laboratory experiments on plant–plant information transfer. Biochem Syst Ecol 29: 1089 - 1102CrossRefGoogle Scholar
  15. Bruin J, Dicke M, Sabelis MW (1992) Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experientia 48: 525 - 529CrossRefGoogle Scholar
  16. Cardinale BJ, Harvey CT, Gross K, Ives AR (2003) Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. Ecol Lett 6: 857 - 865CrossRefGoogle Scholar
  17. Carson WP, Root RB (1999) Top-down effects of insect herbivores during early succes-sion: influence on biomass and plant dominance. Oecologia 121: 260 - 272CrossRefGoogle Scholar
  18. Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47: 267 - 297PubMedCrossRefGoogle Scholar
  19. Coll M, Izraylevich S (1997) When predators also feed on plants: effects of competition and plant quality on omnivore–prey population dynamics. Annu Entomol Soc Am 90: 155 - 161CrossRefGoogle Scholar
  20. Coll M, Ridgway RL (1995) Functional and numerical responses of Orius insidiosus ( Heteroptera, Anthocoridae) to its prey in different vegetable crops. Annu Entomol Soc Am 88: 732-738Google Scholar
  21. De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393: 570 - 573CrossRefGoogle Scholar
  22. de Roos AM, Persson L (2002) Size-dependent life-history traits promote catastrophic collapses of top predators. Proc Natl Acad Sci Am 99: 12907 - 12912CrossRefGoogle Scholar
  23. de Ruiter P, Griffiths B, Moore JC (2002) Biodiversity and stability in soil ecosystems: patterns, processes and the effects of disturbance. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 102 - 113Google Scholar
  24. Dicke M (1994) Local and systemic production of volatile herbivore-induced terpenoids–their role in plant–carnivore mutualism. J Plant Physiol 143: 465 - 472CrossRefGoogle Scholar
  25. Dicke M, Bruin J (2001a) Chemical information transfer between damaged and undamaged plants–preface. Biochem Syst Ecol 29: 979 - 980CrossRefGoogle Scholar
  26. Dicke M, Bruin J (2001b) Chemical information transfer between plants: back to the future. Biochem Syst Ecol 29: 981 - 994CrossRefGoogle Scholar
  27. Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Neth J Zool 38: 148 - 165CrossRefGoogle Scholar
  28. Dicke M, van Beek TA, Posthumus MA, Ben Dom N, van Bokhoven H, de Groot (1990) Isolation and identification of volatile kairomone that affects acarine predator–prey interactions–involvement of host plant in its production. J Chem Ecol 16: 381 - 396PubMedCrossRefGoogle Scholar
  29. Dolch R, Tscharntke T (2000) Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125: 504 - 511CrossRefGoogle Scholar
  30. Drukker B, Scutareanu P, Sabelis MW (1995) Do anthocorid predators respond to synomones from Psylla-infested pear trees under field conditions? Entomol Exp Appl 77: 193 - 203CrossRefGoogle Scholar
  31. Duffy JE (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99: 201 - 219CrossRefGoogle Scholar
  32. Dugatkin LA, Godin JGJ (2002) Prey approaching predators–a cost-benefit perspective. Ann Zool Fenn 29: 233 - 252Google Scholar
  33. English-Loeb GM, Karban R, Hougen-Eitzman D (1993) Direct and indirect competition between spider mites feeding on grapes. Ecol App 3: 699 - 707CrossRefGoogle Scholar
  34. Eubanks MD, Denno RF (2000) Host plants mediate omnivore–herbivore interactions and influence prey suppression. Ecology 81: 936 - 947Google Scholar
  35. Grover JP, Holt RD (1998) Disentangling resource and apparent competition: realistic models for plant–herbivore communities. J Theor Biol 191: 353 - 376CrossRefGoogle Scholar
  36. Gurevitch J, Morrison JA, Hedges LV (2000) The interaction between competition and predation: a meta-analysis of field experiments.Am Nat 155: 435 - 453Google Scholar
  37. Haddad NM, Tilman D, Haarstad J, Ritchie M, Knops JMH (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. Am Nat 158: 17 - 35PubMedCrossRefGoogle Scholar
  38. Hairston NG, Hairston NG (1997) Does food web complexity eliminate trophic-level dynamics? Am Nat 149: 1001 - 1007PubMedCrossRefGoogle Scholar
  39. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH (1999) Plant diversity and productivity experiments in European grasslands. Science 286: 1123 - 1127PubMedCrossRefGoogle Scholar
  40. Hector A, Loreau M, Schmid B, Biodepth Project (2002) Biodiversity manipulation experiments: studies replicated at multiple sites. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 36 - 46Google Scholar
  41. Holt RD (1977) Predation, apparent competition, and structure of prey communities. Theor Popul Biol 12: 197 - 229PubMedCrossRefGoogle Scholar
  42. Holt RD (1984) Spatial heterogeneity, indirect interactions, and the coexistence of prey species.Am Nat 124: 377 - 406Google Scholar
  43. Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25: 495 - 520CrossRefGoogle Scholar
  44. Holt RD, Loreau M (2001) Biodiversity and ecosystem functioning: the role of trophic interactions and the importance of system openness. In: Kinzig A, Tilman D, Pacala SW (eds) Functional consequences of biodiversity: experimental progress and theoretical extensions. Princeton University Press, Princeton, pp 246 - 262Google Scholar
  45. Hooper DU, Vitousek PM (1997) The effects of plant composition and diversity on ecosystem processes. Science 277: 1302 - 1305CrossRefGoogle Scholar
  46. Hougen-Eitzman D, Karban R (1995) Mechanisms of interspecific competition that result in successful control of Pacific mites following inoculations of Willamette mites on grapevines. Oecologia 103: 157 - 161CrossRefGoogle Scholar
  47. Huisman J, Weissing FJ (1999) Biodiversity of plankton by species oscillations and chaos. Nature 402: 407 - 410CrossRefGoogle Scholar
  48. Hulot FD, Lacroix G, Lescher-Moutoue FO, Loreau M (2000) Functional diversity governs ecosystem response to nutrient enrichment. Nature 405: 340 - 344PubMedCrossRefGoogle Scholar
  49. Huston MA (1997) Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449 - 460CrossRefGoogle Scholar
  50. Huston MA, McBride AC (2002) Evaluating the relative strengths of biotic versus abiotic controls on ecosystem processes. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 47 - 60Google Scholar
  51. Janssen A (1999) Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomol Exp Appl 90: 191 - 198CrossRefGoogle Scholar
  52. Janssen A, van Alphen JJM, Sabelis MW, Bakker K (1995) Odour-mediated avoidance of competition in Drosophila parasitoids–the ghost of competition. Oikos 73: 356 - 366CrossRefGoogle Scholar
  53. Janssen A, Bruin J, Jacobs G, Schraag R, Sabelis MW (1997) Predators use volatiles to avoid prey patches with conspecifics. J Anim Ecol 66: 223 - 232CrossRefGoogle Scholar
  54. Janssen A, Sabelis MW, Bruin J (2002) Evolution of herbivore-induced plant volatiles. Oikos 97: 134 - 138CrossRefGoogle Scholar
  55. Janssen A, Willemse E, van der Hammen T (2003) Poor host plant quality causes omnivore to consume predator eggs. J Anim Ecol 72: 478 - 483CrossRefGoogle Scholar
  56. Karban R (2001) Communication between sagebrush and wild tobacco in the field. Biochem Syst Ecol 29: 995 - 1005CrossRefGoogle Scholar
  57. Karban R, English-Loeb G, Hougen-Eitzman D (1997) Mite vaccinations for sustainable management of spider mites in vineyards. Ecol App 7: 183 - 193CrossRefGoogle Scholar
  58. Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141 - 2144PubMedCrossRefGoogle Scholar
  59. Kuijper LDJ, Kooi BW, Zonneveld C, Kooijman S (2003) Omnivory and food web dynamics. Ecol Mod 163: 19 - 32CrossRefGoogle Scholar
  60. Lima SL (1998) Nonlethal effects in the ecology of predator–prey interactions–what are the ecological effects of anti-predator decision-making? Bioscience 48: 25 - 34CrossRefGoogle Scholar
  61. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation–areview and prospectus. Can J Zool-Rev Can Zool 68: 619 - 640CrossRefGoogle Scholar
  62. Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91: 3 - 17CrossRefGoogle Scholar
  63. Loreau M, Naeem P, Inchausti J, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (200 1) Ecology–biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804 - 808Google Scholar
  64. McGrady-Steed J, Morin PJ (2000) Biodiversity, density compensation, and the dynamics of populations and functional groups. Ecology 81: 361 - 373CrossRefGoogle Scholar
  65. Morin PJ, Lawler SP (1995) Food-web architecture and population dynamics–theory and empirical evidence. Annu Rev Ecol Syst 26: 505 - 529CrossRefGoogle Scholar
  66. Mulder CPH, Koricheva J, Huss-Danell K, Hogberg P, Joshi J (1999) Insects affect relationships between plant species richness and ecosystem processes. Ecol Lett 2: 237 - 246CrossRefGoogle Scholar
  67. Mylius S, Klumpers K, de Roos AM, Persson L (2001) Impact of omnivory and stage structure on food web composition along a productivity gradient. Am Nat 158:259– 276Google Scholar
  68. Naeem S, Li SB (1997) Biodiversity enhances ecosystem reliability. Nature 390:507-509 Naeem S, Wright JP (2003) Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett 6: 567 - 579CrossRefGoogle Scholar
  69. Norton AP, English-Loeb G, Gadoury D, Seem RC (2000) Mycophagous mites and foliar pathogens: leaf domatia mediate tritrophic interactions in grapes. Ecology 81: 490–499CrossRefGoogle Scholar
  70. O’Dowd DJ, Willson MF (1997) Leaf domatia and the distribution and abundance of foliar mites in broadleaf deciduous forest in Wisconsin.Am Midl Nat 137: 337 - 348Google Scholar
  71. Oksanen L, Fretwell S, Arruda J, Niemelä P (198 1) Exploitation ecosystems in gradients of primary productivity.Am Nat 118: 240 - 261Google Scholar
  72. Pallini A, Janssen A, Sabelis MW (1997) Odour-mediated responses of phytophagous mites to conspecific and heterospecific competitors. Oecologia 110: 179 - 185CrossRefGoogle Scholar
  73. Pemberton RW, Lee JH (1996) The influence of extrafloral nectaries on parasitism of an insect herbivore.Am J Bot 83: 1187 - 1194Google Scholar
  74. Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147: 813 - 846CrossRefGoogle Scholar
  75. Polis GA, Winemiller KO (1996) Food webs. Integration of patterns and dynamics. Chapman and Hall, New YorkGoogle Scholar
  76. Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation –potential competitors that eat each other. Annu Rev Ecol Syst 20: 297 - 330CrossRefGoogle Scholar
  77. Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels. Annu Rev Ecol Syst 11: 41 - 65CrossRefGoogle Scholar
  78. Raffaelli D, van der Putten WH, Persson L, Wardle DA, Petchey OL, Koricheva J, van der Heijden M, Mikola J, Kennedy T (2002) Multitrophic dynamics and ecosystem processes. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 147 - 154Google Scholar
  79. Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological control agents–theory and evidence. Biol Control 5: 303 - 335CrossRefGoogle Scholar
  80. Ruesink JL, Srivastava SD (2001) Numerical and per capita responses to species loss: mechanisms maintaining ecosystem function in a community of stream insect detrivores. Oikos 93: 221 - 234CrossRefGoogle Scholar
  81. Sabelis MW, Janssen A, Bruin J, Bakker FM, Drukker B, Scutareanu P, van Rijn PCJ (1999a) Interactions between arthropod predators and plants: a conspiracy against herbivorous arthropods? In: Bruin J, van der Geest LPS, Sabelis MW (eds) Ecology and evolution of the Acari. Kluwer, Dordrecht, pp 207 - 229CrossRefGoogle Scholar
  82. Sabelis MW, Janssen A, Pallini A, Venzon M, Bruin J, Drukker B, Scutareanu P (1999b) Behavioural responses of predatory and herbivorous arthropods to induced plant volatiles: from evolutionary ecology to agricultural applications. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. Am Phytopathol Soc Press, St. Paul, Minnesota, pp 269 - 296Google Scholar
  83. Sabelis MW, van Baalen M, Pels B, Egas M, Janssen A (2002) Evolution of exploitation and defense in tritrophic interactions. In: Dieckmann U, Metz JA, Sabelis MW, Sigmund K (eds) Adaptive dynamics of infectious diseases: in pursuit of virulence management. Cambridge University Press, Cambridge, pp 297 - 321CrossRefGoogle Scholar
  84. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413: 591 - 596PubMedCrossRefGoogle Scholar
  85. Schmid B, Hector A, Huston MA, Inchausti P, Nijs I, Leadley PW, Tilman D (2002) The design and analysis of biodiversity experiments. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 61 - 75Google Scholar
  86. Schmitz OJ, Beckerman AP, O’Brien KM (1997) Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78: 1388 - 1399CrossRefGoogle Scholar
  87. Schmitz OJ, Hamback PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants.Am Nat 155: 141 - 153Google Scholar
  88. Sessions L, Kelly D (2002) Predator-mediated apparent competition between an introduced grass, Agrostis capillaris, and a native fern, Botrychium australe ( Ophioglossaceae), in New Zealand. Oikos 96: 102-109Google Scholar
  89. Shimoda T, Takabayashi J, Ashihara W, Takafuji A (1997) Response of predatory insect Scolothrips takahashii toward herbivore-induced plant volatiles under laboratory and field conditions. J Chem Ecol 23: 2033 - 2048CrossRefGoogle Scholar
  90. Siemann E, Tilman D, Haarstad J, Ritchie M (1998) Experimental tests of the dependence of arthropod diversity on plant diversity.Am Nat 152: 738 - 750Google Scholar
  91. Sih A (1980) Optimal behavior: can foragers balance two conflicting needs? Science 210: 1041 - 1043PubMedCrossRefGoogle Scholar
  92. Thaler JS (1999) Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399: 686 - 688CrossRefGoogle Scholar
  93. Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285: 893 - 895PubMedCrossRefGoogle Scholar
  94. Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 379: 718 - 720CrossRefGoogle Scholar
  95. Tilman D, Knops J, Wedin D, Reich P (2002) Plant diversity and composition: effects on productivity and nutrient dynamics of experimental grasslands. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, pp 21 - 35Google Scholar
  96. Tumlinson JH, Lewis WJ, Vet LEM (1993) How parasitic wasps find their hosts. Sci Am 268: 100 - 106CrossRefGoogle Scholar
  97. Tuomi J, Augner M, Nilsson J (1994) A dilemma of plant defenses: is it really worth killing the herbivore? J Theor Biol 170: 427 - 430CrossRefGoogle Scholar
  98. Turlings TCJ, Fritzsche ME (1999) Attraction of parasitic wasps by caterpillar-damaged plants. In: Proc Novartis Foundation Symp 223, Insect–plant interactions and induced plant defence. Wiley, Chichester, pp 21 - 38Google Scholar
  99. Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251 - 1253PubMedCrossRefGoogle Scholar
  100. Turner CE, Pemberton RW (1989) Leaf domatia and mites: a plant protection–mutualism hypothesis. In: Bock JH, Linhart YB (eds) The evolutionary ecology of plants. Westview Press, Boulder, pp 341 - 359Google Scholar
  101. van Dam NM, Hadwich K, Baldwin IT (2000) Induced responses in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta. Oecologia 122: 371 - 379CrossRefGoogle Scholar
  102. van der Meijden E, Klinkhamer PGL (2000) Conflicting interests of plants and the natural enemies of herbivores. Oikos 89: 202 - 208CrossRefGoogle Scholar
  103. van der Putten WH, Vet LEM, Harvey JA, Wackers FL (2001) Linking above-ground and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16: 547 - 554CrossRefGoogle Scholar
  104. van Loon JJA, de Boer JG, Dicke M (2000) Parasitoid–plant mutualism: parasitoid attack of herbivore increases plant reproduction. Entomol Exp Appl 97: 219 - 227CrossRefGoogle Scholar
  105. van Rijn PCJ, Van Houten YM, Sabelis MW (2002) How plants benefit from providing food to predators even when it is also edible to herbivores. Ecology 83: 2664 - 2679CrossRefGoogle Scholar
  106. Walter DE (1996) Living on leaves: mites, tomenta, and leaf domatia. Annu Rev Entomol41: 101 - 114Google Scholar
  107. Walter DE, O’Dowd DJ (1992) Leaves with domatia have more mites. Ecology 73:1514– 1518Google Scholar
  108. Wardle DA, van der Putten WH (2002) Biodiversity, ecosystem functioning and aboveground–below-ground linkages. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning. Oxford University Press, Oxford, pp 155 - 168Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. Janssen
  • M. W. Sabelis

There are no affiliations available

Personalised recommendations