Skip to main content

Biotic Interactions in the Rhizosphere: Effects on Plant Growth and Herbivore Development

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 173))

Summary

Considerable progress has been made in understanding specific interactions of plant roots with rhizosphere microorganisms and interactions with the soil fauna. Due to their function in nutrient mineralization, the role of soil organisms is usually considered important in long-term processes such as decomposition of litter materials. It would be incorrect, however, to assume that effects of decomposer animals on plant performance solely result from improved plant uptake of nutrients. In recent years, our view has profoundly changed, giving soil organisms a much more active role by interacting with living plants, their symbionts and pathogens and thereby shaping ecosystem processes. It has to be appreciated that decomposer animals consist of very different functional groups which differentially affect microbial diversity and function in the rhizosphere, thereby modifying plant physiology, morphology and phenology. These interactions cascade up to herbivores above the ground, ultimately affecting the whole aboveground food web. In addition to changing bottom-up forces on the herbivore community, the decomposer system may strengthen top-down forces on aboveground herbivores by subsidizing generalist predators with prey. The full implications of this integrated view of terrestrial ecosystem function have yet to be explored. In arable systems, intelligent management practices have to be developed employing the decomposer community to help in plant nutrition, to foster plant defence against herbivores and to support the control of herbivore pest populations. Current practices based on soil tillage and inorganic nutrient inputs certainly are inadequate in this respect. In more natural ecosystems the role of the decomposer community as driving agent for plant competition and community composition via modifying the rhizosphere environment needs considerably more attention. Microorganisms have been identified as an important structuring force of natural plant communities in recent years; however, those organisms that regulate the structure and functioning of microbial communities so far have been widely neglected. A comprehensive understanding of regulating forces in arable and natural systems will not be achieved without integrating the animal community below the ground.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alphei J, Bonkowski M, Scheu S (1996) Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106: 111 - 126

    Article  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradorhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204: 57 - 67

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1998) Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62: 45 - 151

    Article  CAS  Google Scholar 

  • Bala A, Giller KE (2001) Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytol 149: 495 - 507

    Article  Google Scholar 

  • Baldwin IT, Hamilton W (2000) Jasmonate-induced responses of Nicotiana sylvestris results in fitness costs due to impaired competitive ability for nitrogen. J Chem Ecol 26: 915 - 952

    Article  CAS  Google Scholar 

  • Barea JM, Navarro E, Montoya E (1976) Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J Appl Bacteriol 40: 129 - 134

    Article  CAS  PubMed  Google Scholar 

  • Beggs JR, Rees JS (1999) Restructuring of Lepidoptera communities by introduced Vespula wasps in a New Zealand beech forest. Oecologia 119: 565 - 571

    Article  Google Scholar 

  • Bezdicek DF, Kennedy AC (1979) Economic microbial ecology: symbiontic nitrogen fixation and nitrogen cycling in terrestrial environments. In: Lynch JM, Hobbie JE (eds) Micro-organisms in action: concepts and applications in microbial ecology. Blackwell, Oxford, pp 241 - 260

    Google Scholar 

  • Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34: 1709 - 1715

    Article  CAS  Google Scholar 

  • Bonkowski M, Cheng W, Griffiths BS, Alphei J, Scheu S (2000a) Microbial–faunal interactions in the rhizosphere and effects on plant growth. Eur J Soil Biol 36: 135 - 147

    Article  Google Scholar 

  • Bonkowski M, Griffiths BS, Scrimgeour C (2000b) Substrate heterogeneity and microfauna in soil organic ‘hotspots’ as determinants of nitrogen capture and growth of rye-grass.Appl Soil Ecol 14: 37 - 53

    Google Scholar 

  • Bonkowski M, Geoghegan IE, Birch ANE, Griffiths BS (2001 a) Effects of soil decomposer invertebrates (protozoa and earthworms) on an above-ground phytophagous insect (cereal aphid), mediated through changes in the host plant. Oikos 95: 441 - 450

    Google Scholar 

  • Bonkowski M, Jentschke G, Scheu S (2001b) Contrasting effects of microbes in the rhizosphere: interactions of mycorrhiza (Paxillus involutus (Batsch) Fr.), naked amoebae (Protozoa) and Norway spruce seedlings (Picea abies Karst.). Appl Soil Ecol 18: 193 - 204

    Article  Google Scholar 

  • Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore.Oecologia 112: 534 - 542

    Google Scholar 

  • Brown ME (1972) Plant growth substances produced by micro-organisms of soil and rhizosphere. J Appl Bacteriol 35: 443 - 451

    Article  CAS  Google Scholar 

  • Brown VK, Gange AC (2002) Tritrophic below- and above-ground interactions in succession. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 197 - 222

    Chapter  Google Scholar 

  • Brussaard L (1998) Soil fauna, guilds, functional groups and ecosystem processes. Appl Soil Ecol 9: 123 - 135

    Article  Google Scholar 

  • Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40: 357 - 368

    Article  CAS  Google Scholar 

  • Campell BC, Nes WD (1983) A reappraisal of sterol biosynthesis and metabolism in aphids. J Insect Physiol 29: 149 - 156

    Article  Google Scholar 

  • Chanway CP, Nelson LM, Holl FB (1988) Cultivar specific growth promotion of spring wheat (Triticum aestivum L.) by co-existent Bacillus species. Can J Microbiol 34: 925 - 929

    Article  Google Scholar 

  • Chen BR, Wise DH (1999) Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80: 761 - 772

    Article  Google Scholar 

  • Chet I, Ordentlich A, Shapira R, Oppenheim A (199 1) Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. In: Kleister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 229 - 236

    Google Scholar 

  • Christensen M (1989) A view of fungal ecology. Mycologia 81: 1 - 19

    Article  Google Scholar 

  • Christensen S, Griffiths BS, Ekelund F, Rønn R (1992) Huge increase in bacterivores on freshly killed barley roots. FEMS Microbiol Ecol 86: 303 - 310

    Article  Google Scholar 

  • Cipollini D, Purrington CB, Bergelson J (2003) Costs of induced responses in plants. Basic Appl Ecol 4: 79 - 85

    Article  Google Scholar 

  • Clarholm M (1984) Microbes as predators or prey–heterotrophic, free-living protozoa: neglected microorganisms with an important task in regulating bacterial populations. In: Klug MJ, Reddy CA (eds) Current perspectives on microbial ecology. American Society of Microbiology, Washington, pp 321 - 326

    Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem 17: 181 - 187

    Article  CAS  Google Scholar 

  • Cornelissen JHC, Aerts R, Cerabolini B, Werger MJA, van der Heijden MGA (2001) Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129: 611 - 619

    Article  CAS  PubMed  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21: 1 - 18

    Article  PubMed  Google Scholar 

  • Dixon AFG (1985) Aphid ecology. Blackie, Glasgow

    Google Scholar 

  • Fitter AH (1994) Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcey RW (eds) Exploitation of environmental heterogeneity by plants: ecophysiological processes above-and belowground. Academic Press, San Diego, pp 305 - 323

    Chapter  Google Scholar 

  • Fitter AH, Merryweather JW (1992) Why are some plants more mycorrhizal than others? An ecological enquiry. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 26 - 36

    Google Scholar 

  • Gange AC, Ayres RL (1999) On the relation between mycorrhizal colonization and plant “benefit”.Oikos 87: 615 - 621

    Google Scholar 

  • Gange AC, Nice HE (1997) Performance of the thistle gall fly, Urophora cardui, in relation to host plant nitrogen and mycorrhizal colonization. New Phytol 137: 335 - 343

    Article  Google Scholar 

  • Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128: 79 - 87

    Article  Google Scholar 

  • Gange AC, Bower E, Brown VK (1999) Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia 120: 123 - 131

    Article  Google Scholar 

  • Gange AC, Stagg PG, Ward LK (2002) Arbuscular mycorrhizal fungi affect phytophagous insect specialism. Ecol Lett 5: 11 - 15

    Article  Google Scholar 

  • Gehring GA, Whitham TG (2002) Mycorrhizae–herbivore interactions: population and community consequences. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer ecological studies analysis and synthesis, vol 157. Springer, Berlin Heidelberg New York, pp 295 - 320

    Chapter  Google Scholar 

  • Gershenzon J (1994) The cost of plant chemical defense against herbivory: a biochemical perspective. In: Bernays EA (ed) Insect–plant interactions. CRC Press, Boca Raton, pp 105 - 173

    Google Scholar 

  • Goverde M, van der Heijden MGA, Wiemken A, Sanders IR, Erhardt A (2000) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125: 362 - 369

    Article  Google Scholar 

  • Graves JD, Watkins NK, Fitter AH, Robinson D, Scrimgeour C (1997) Intraspecific transfer of carbon between plants linked by a common mycorrhizal network. Plant Soil 192: 153 - 159

    Article  CAS  Google Scholar 

  • Griffiths BS (1994) Soil nutrient flow. In: Darbyshire JF (ed) Soil protozoa. CAB International, Wallingford, pp 65 - 91

    Google Scholar 

  • Griffiths BS, Caul S (1993) Migration of bacterial-feeding nematodes, but not protozoa, to decomposing grass residues. Biol Fert Soils 15: 201 - 207

    Article  Google Scholar 

  • Griffiths BS, Ekelund F, Rønn R, Christensen S (1993) Protozoa and nematodes on decomposing barley roots. Soil Biol Biochem 25: 1293 - 1295

    Article  Google Scholar 

  • Griffith GS, Cresswell A, Jones S, Allen DK (2000) The nitrogen handling characteristics of white clover (Trifolium repens L.) cultivars and a perennial ryegrass (Lolium perenne L.) cultivar. J Exp Bot 51: 1879 - 1892

    Article  CAS  PubMed  Google Scholar 

  • Halaj J, Wise DH (2001) Terrestrial trophic cascades: how much do they trickle? Am Nat 157: 262 - 281

    Article  CAS  PubMed  Google Scholar 

  • Halaj J, Wise DH (2002) Impact of a detrital subsidy on trophic cascades in a terrestrial grazing food web. Ecology 83: 3141 - 3151

    Article  Google Scholar 

  • Halitschke R, Keßler A, Kahl J, Lorenz A, Baldwin IT (2000) Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia 124: 408 - 417

    Article  Google Scholar 

  • Hamilton JG, Zangerl A, DeLucia EH, Berenbaum MR (2001) The carbon–nutrient balance hypothesis: its rise and fall. Ecol Lett 4: 86 - 95

    Article  Google Scholar 

  • Hawes MC (1991) Living plant cells released from the root cap: a regulator of microbial populations in the rhizosphere? In: Kleister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 51 - 59

    Chapter  Google Scholar 

  • Hawkins BA, Mills NJ, Jervis MA, Price PW (1999) Is the biological control of insects a natural phenomenon? Oikos 86: 493 - 506

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or to defend. Q Rev Biol 67: 283 - 335

    Article  Google Scholar 

  • Hiltner L (1904) Über neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landw Ges 98: 59 - 78

    Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1998) Root proliferation, soil fauna and plant nitrogen capture from nutrient-rich patches in soil. New Phytol 139: 479 - 494

    Article  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (1999) Plant, soil fauna and microbial responses to N-rich organic patches of contrasting temporal availability. Soil Biol Biochem 31: 1517 - 1530

    Article  CAS  Google Scholar 

  • Holland MA (1997) Occam’s razor applied to hormonology: are cytokinins produced by plants? Plant Physiol 115: 865 - 868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt RD, Lawton JH (1994) The ecological consequences of shared natural enemies. Annu Rev Ecol Syst 25: 495 - 520

    Article  Google Scholar 

  • Huber-Sannwald E, Pyke DA, Caldwell MM (1997) Perception of neighbouring plants by rhizomes and roots: morphological manifestations of a clonal plant. Can J Bot 75: 2146 - 2157

    Article  Google Scholar 

  • Jentschke G, Bonkowski M, Godbold DL, Scheu S (1995) Soil protozoa and forest tree growth: non-nutritional effects and interaction with mycorrhizas. Biol Fertil Soils 20: 263 - 269

    Article  Google Scholar 

  • Jingguo W, Bakken LR (1997) Competition for nitrogen during mineralization of plant residues in soil: microbial response to C and N availability. Soil Biol Biochem 29: 163 - 170

    Article  CAS  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135: 575 - 585

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69: 373 - 386

    Article  Google Scholar 

  • Jones DL, Darrah PR (1995) Influx and efflux of organic acids across the soil–root interface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil 173: 103 - 109

    Article  CAS  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12: 139 - 143

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teitze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286: 885–886

    Article  CAS  Google Scholar 

  • Kraffczyk I, Trolldenier G, Beringer H (1984) Soluble root exudates of maize: influence of potassium supply and rhizosphere microorganisms. Soil Biol Biochem 16: 315 - 322

    Article  CAS  Google Scholar 

  • Kuikman PJ, Jansen AG, van Veen JA, Zehnder AJB (1990) Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol Fertil Soils 10: 22 - 28

    Article  CAS  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165: 382 - 396

    Article  CAS  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol 8: 298 - 300

    Article  CAS  PubMed  Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Sci 33: 159 - 193

    CAS  Google Scholar 

  • Lawton JH, McNeill S (1979) Between the devil and the deep blue sea: on the problems of being a herbivore. In: Anderson RM, Turner BD, Taylor LR (eds) Population dynamics. Blackwell, Oxford, pp 223 - 244

    Google Scholar 

  • Lerdau M, Coley PD (2002) Benefits of the carbon–nutrient balance hypothesis. Oikos 98: 533 - 535

    Article  Google Scholar 

  • Lipson DA, Raab TK, Schmidt SK, Monson RK (1999a) Variation in competitive abilities of plants and microbes for specific amino acids. Biol Fertil Soils 29: 257 - 261

    Article  CAS  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (1999b) Links between microbial population dynamics and nitrogen availability in an alpine ecosystem. Ecology 80: 162 - 163

    Article  Google Scholar 

  • Lorio P (1986) Growth-differentiation balance: a basis for understanding southern pine beetle–tree interactions. For Ecol Manage 14: 259 - 273

    Article  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129: 1 - 10

    Article  CAS  Google Scholar 

  • Marschner H (1992) Nutrient dynamics at the soil–root interface (rhizosphere). In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 3 - 12

    Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100: 1444 - 1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11: 119 - 161

    Article  Google Scholar 

  • McNaughton SJ, Oesterheld M, Frank DA, Williams KJ (1989) Ecosystem-level patterns ofprimary productivity and herbivory in terrestrial habitats. Nature 341: 142 - 144

    Article  CAS  PubMed  Google Scholar 

  • Moore JC, Hunt HW (1988) Resource compartmentation and the stability of real ecosystems. Nature 333: 261 - 263

    Article  Google Scholar 

  • Mutikainen P, Walls M, Ovaska J, Keinänen M, Julkunen-Tiitto R, Vapaavuori E (2002) Costs of herbivore resistance in clonal saplings of Betula pendula. Oecologia 133: 364 - 371

    Article  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18: 243 - 271

    Article  Google Scholar 

  • Nitao JK, Zangerl AR, Berenbaum MR (2002) CNB: requiescat in pace? Oikos 98: 540 - 546

    Article  CAS  Google Scholar 

  • Obreht Z, Kerby NW, Gantar M, Rowell P (1993) Effects of root-associated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol Fertil Soils 15: 68 - 72

    Article  CAS  Google Scholar 

  • Oksanen L, Aunapuu M, Oksanen T, Schneider M, Ekerholm P, Lundberg PA, Armulik T, Aruoja V, Bondestad L (1997) Outlines of food webs in a low arctic tundra landscape in relation to three theories on trophic dynamics. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford, pp 351 - 373

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42: 207 - 220

    Article  CAS  PubMed  Google Scholar 

  • Petersen DJ, Srinivasan M, Chanway CP (1996) Bacillus polymyxa stimulates increased Rhizobium etli populations and nodulation when co-resident in the rhizosphere of Phaseolus vulgaris. FEMS Microbiol Lett 142: 271 - 276

    Google Scholar 

  • Phillips DA, Strong DR (2003) Rhizosphere control points: molecules to food webs. Ecology 84: 815

    Article  Google Scholar 

  • Phillips DA, Ferris H, Cook DR, Strong DR (2003) Molecular control points in rhizosphere food webs. Ecology 84: 816 - 826

    Article  Google Scholar 

  • Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory.Am Nat 138: 123 - 155

    Google Scholar 

  • Polis GA (1994) Food webs, trophic cascades and community structure. Aust J Ecol 19: 121 - 136

    Article  Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147: 813 - 846

    Article  Google Scholar 

  • Price PW (199 1) The plant vigor hypotheses and herbivore attack. Oikos 62:244-251

    Google Scholar 

  • Puri G, Ashman MR (1999) Microbial immobilization of 15N-labelled ammonium and nitrate in a temperate woodland soil. Soil Biol Biochem 31: 929 - 931

    Article  CAS  Google Scholar 

  • Reichle DE, O’Neill RV, Harris WF (1975) Principles of energy and material exchange in ecosystems. In: Van Dobben WH, Lowe McConnell RH (eds) Unifying concepts in ecology. Junk, The Hague, pp 27 - 43

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (1997) Azoarcus spp. and their interactions with grass roots. Plant Soil 194: 57 - 64

    Google Scholar 

  • Ritz K, Griffiths BS (1987) Effects of carbon and nitrate additions to soil upon leaching of nitrate, microbial predators and nitrogen uptake by plants. Plant Soil 102: 289 - 237

    Article  Google Scholar 

  • Robinson D (1994) The response of plants to non-uniform supplies of nutrients. New Phytol 127: 635 - 674

    Article  CAS  Google Scholar 

  • Rolfe BG, Djordjevic MA, Weinman JJ, Mathesius U, Pittock C, Gärtner E, Ride EM, Dong Z, McCully M, McIver J (1997) Root morphogenesis in legumes and cereals and the effect of bacterial inoculation on root development. Plant Soil 194: 131 - 144

    Article  CAS  Google Scholar 

  • Rovira AD (199 1) Rhizosphere research–85 years of progress and frustration. In: Kleister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer, Dordrecht, pp 3-13

    Google Scholar 

  • Ryle GJA, Powell CE, Gordon AJ (1979) The respiratory costs of nitrogen fixation in soybean, cowpea and white clover. J Exp Bot 30: 145 - 153

    Article  CAS  Google Scholar 

  • Scheu S (1993) There is an earthworm mobilizable nitrogen pool in soil. Pedobiologia 37: 1 - 7

    Google Scholar 

  • Scheu S (2001) Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl Ecol 2: 3 - 13

    Article  Google Scholar 

  • Scheu S, Setälä H (2002) Multitrophic interactions in decomposer food webs. In: Tscharntke T, Hawkins BA (eds) Multitrophic level interactions. Cambridge University Press, Cambridge, pp 223 - 264

    Chapter  Google Scholar 

  • Scheu S, Theenhaus A, Jones H (1999) Links between the detritivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development.Oecologia 119: 541 - 551

    Google Scholar 

  • Schulman OP, Tiunov AV (1999) Leaf litter fragmentation by the earthworm Lumbricus terrestris L. Pedobiologia 43: 453 - 458

    Google Scholar 

  • Settle WH, Ariawan H, Tri Astuti E, Cahyana W, Hakim AL, Hindayana D, Sri Lestari A, Sartano P (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77: 1975 - 1988

    Article  Google Scholar 

  • Shishido M, Massicotte HB, Chanway CP (1996) Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot 77: 433 - 441

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Snyder WE, Wise DH (1999) Predator interference and the establishment of generalist predator populations for biocontrol. Biol Control 15: 283 - 292

    Article  Google Scholar 

  • Söderström B (1992) The ecological potential of the ectomycorrhizal mycelium. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, pp 77 - 83

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24: 487 - 506

    Google Scholar 

  • Stephens PM, Davoren CW (1997) Influence of the earthworms Aporrectodea trapezoides and A. rosea on the disease severity of Rhizoctonia solani on subterranean clover and ryegrass. Soil Biol Biochem 29: 511 - 516

    Article  CAS  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biocontrol agents? Annu Rev Entomol 47: 561 - 594

    Article  CAS  PubMed  Google Scholar 

  • Meijden E, Klinkhamer PGL (2000) Conflicting interests of plants and the natural enemies of herbivores. Oikos 89: 202 - 208

    Article  Google Scholar 

  • Verhagen FJM, Hagemann PEJ, Woldendorp JW, Laanbroek HJ (1994) Competition for ammonium between nitrifying bacteria and plant roots in soil in pots; effects of grazing by flagellates and fertilization. Soil Biol Biochem 26: 89 - 96

    Article  CAS  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I (2003) Interaction between foliar-feeding insects, mycorrhizal fungi, and rhizosphere protozoa on pea plants. Pedobiologia 47: 281 - 287

    Article  Google Scholar 

  • Wang JG, Bakken LR (1997) Competition for nitrogen during mineralization of plant residues in soil: microbial response to C and N. Soil Biol Biochem 29: 163 - 170

    Article  Google Scholar 

  • Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67: 321 - 358

    Article  Google Scholar 

  • Wardle DA, Yeates GW (1993) The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer food webs. Oecologia 93: 303 - 306

    Article  Google Scholar 

  • White TCR (1993) The inadequate environment: nitrogen and the abundance of animals. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Wise DH, Snyder WE, Tuntibunpakul P, Halaj J (1999) Spiders in decomposition food webs of agroecosystems: theory and evidence. J Arachnol 27: 363 - 370

    Google Scholar 

  • Wurst S, Jones TH (2003) Indirect effects of earthworms (Aporrectodea caliginosa) on an above-ground tritrophic interaction. Pedobiologia 47: 91 - 97

    Article  Google Scholar 

  • Wurst S, Langel R, Reineking A, Bonkowski M, Scheu S (2003) Effects of earthworms and organic litter distribution on plant performance and aphid reproduction. Oecologia 137: 90 - 96

    Article  PubMed  Google Scholar 

  • Wurst S, Dugassa-Gobena D, Scheu S (2004) Earthworms and litter distribution affect plant defensive chemistry. J Chem Ecol 30 (4)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bonkowski, M., Scheu, S. (2008). Biotic Interactions in the Rhizosphere: Effects on Plant Growth and Herbivore Development. In: Weisser, W.W., Siemann, E. (eds) Insects and Ecosystem Function. Ecological Studies, vol 173. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74004-9_4

Download citation

Publish with us

Policies and ethics