Skip to main content

Membrane Surface Morphology and Membrane Performance

  • Chapter
Synthetic Polymeric Membranes

Part of the book series: Springer Laboratory ((SPLABORATORY))

  • 3504 Accesses

Abstract

The use of AFMto study surfaces provides information about pore size distribution, surface morphology and electrical properties, surface adhesion/membrane fouling behavior, and the correlation between membrane characteristics and process behavior. This information, in conjunction with mathematical models and performance data, allows for the development of a novel approach in the prediction of new desired membranes. We discussed in earlier chapters that nodules, nodule aggregates, pore sizes, pore size distributions, and roughness parameters can all be observed on the membrane surface by AFM and quantified using software. Thus, AFM has proved to be a very powerful tool to study membrane surface morphology. However, this does not necessarily satisfy the knowledge-seeking scientist. Although the above parameters are highly valuable for the purpose of membrane characterization, they are of little use, at least for separation membrane scientists and engineers, unless correlations can be found between those parameters andmembrane performance. Information onmembrane surface characterization will be complete only when the cause-and-effect relationships among membrane preparation, membrane morphology, and membrane performance are fully understood. Therefore, an attempt will be made in this chapter to find some relationships between the surface characterization parameters obtained by AFM and the membrane performance data. Most obviously, the pore size and the pore size distribution will have a direct influence on the selectivity and the permeation rate of NF, UF, and MF membranes, where pores are most visible. Furthermore, some interesting discussions can be found in the literature, although still controversial, on the relationship between the roughness parameter and the flux, with respect to RO and gas separation membranes, where the measurement of the pore size is not at all easy. The roughness parameters are also related to the fouling tendency of the RO/NF and UF membranes. It has to be emphasized that all these discussions are found in the papers published during the past decade since the emergence of AFM as a surface characterization tool. Some of the discussions have already provided important guidelines for the sophisticated design of separation membranes. Further progress is expected to take place during the next decade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirose M, Ito H, Kamiyama Y (1996) J Membr Sci 121:209

    Article  CAS  Google Scholar 

  2. Lu X, Bian X, Shi L (2002) J Membr Sci 210:3

    Article  CAS  Google Scholar 

  3. Wu HR, Wang BF, Guo SH (1983) J East China Univ Sci Technol 2:205

    Google Scholar 

  4. Wu J, Wang BF, Wu HR (1992) J East China Univ Sci Technol 18:645

    CAS  Google Scholar 

  5. Hamza A, Chowdhury G, Matsuura T, Sourirajan S (1997) J Membr Sci 129:55

    Article  CAS  Google Scholar 

  6. Stamatialis DF, Dias CR, Norberta de Pinho M (1999) J Membr Sci 160:235

    Article  CAS  Google Scholar 

  7. Kwak SY, Ihm DW (1999) J Membr Sci 158:143

    Article  CAS  Google Scholar 

  8. Kwak SY, Yeom MO, Roh IJ, Kim DY, Kim JJ (1997) J Membr Sci 132:183

    Article  CAS  Google Scholar 

  9. Mohammad AW, Hilal N, Seman MNA (2003) Desalination 158:73

    Article  CAS  Google Scholar 

  10. Bowen WR, Mohammad AW (1998) Desalination 117:257

    Article  CAS  Google Scholar 

  11. Chung TS, Qin JJ, Huan A, Toh KC (1992) J Membr Sci 196:251

    Article  Google Scholar 

  12. Espinoza-Gömez H, Lin SW (2001) Polym Bull 47:297

    Article  Google Scholar 

  13. Khayet M, Feng CY, Matsuura T (2003) J Membr Sci 213:159

    Article  CAS  Google Scholar 

  14. Feng CY, Khulbe KC, Chowdhury G, Matsuura T, Sapkal VC (2001) J Membr Sci 189:193

    Article  CAS  Google Scholar 

  15. Khulbe KC, Feng CY, Hamad F, Matsuura T, Khayet M (2004) J Membr Sci 245:191

    Article  CAS  Google Scholar 

  16. Zhang Y, Shao H, Hu X (2003) J Appl Polym Sci 86:3389

    Article  Google Scholar 

  17. Hilal N, Kochkodan V, Al-Khatib L, Busca G (2002) Surf Interface Anal 33:672

    Article  CAS  Google Scholar 

  18. Teng MY, Lee KR, Liaw DJ, Lin YS, Lai JY (2000) Eur Polym J 36:663

    Article  CAS  Google Scholar 

  19. Khulbe KC, Matsuura T, Lamarche G, Kim HJ (1997) J Membr Sci 135:211

    Article  CAS  Google Scholar 

  20. Khulbe KC, Matsuura T (2000) J Membr Sci 171:273

    Article  CAS  Google Scholar 

  21. Tan JMA, Matsuura T (1999) J Membr Sci 160:7

    Article  CAS  Google Scholar 

  22. Tan JMA (1999) Ph.D. thesis, University of Ottawa

    Google Scholar 

  23. Kapantaidakis GC, Koops GH (2002) J Membr Sci 204:153

    Article  CAS  Google Scholar 

  24. Kapantaidakis GC, Koops GH, Wessling M (2002) Desalination 145:353

    Article  CAS  Google Scholar 

  25. Khulbe KC, Feng C, Matsuura T, Kapantaidakis GC, Wessling M, Koops GH (2003) J Membr Sci 226:63

    Article  CAS  Google Scholar 

  26. Reid BD, Ebron VHM, Musselman IH, Ferraris JP, Balkus KJB Jr (2002) J Membr Sci 195:181

    Article  CAS  Google Scholar 

  27. Gould SAC, Schiraldi DA, Occelli ML (1997) J Appl Polym Sci 65:1273

    Article  Google Scholar 

  28. James PJ, Elliot JA, McMaster TJ, Newton JM, Elliot AMS, Hanna S, Miles MJ (2000) J Mater Sci 35:5111

    Article  CAS  Google Scholar 

  29. Elliot JA, Hanna S (1999) J Appl Crystallogr 32:1069

    Article  Google Scholar 

  30. Hsu WY, Gierke TD (1983) J Membr Sci 13:307

    Article  CAS  Google Scholar 

  31. Soresi B, Quartarone E, Mustarelli P, Magistris A, Chiodelli G (2004) Solid State Ionics 166:383

    Article  CAS  Google Scholar 

  32. Wang F, Hickner M, Kim YS, Zawodzinski TA, Thomas A, McGrath JE (2002) J Membr Sci 197:231

    Article  CAS  Google Scholar 

  33. Borges JP, Godinho MH, Martins AF, Stamatialis DF, De Pinho MN, Belgacem MN (2004) Polym Compos 25:102

    Article  CAS  Google Scholar 

  34. Barzin J, Feng C, Khulbe KC, Matsuura T, Madaeni SS, Mirzadeh H (2004) J Membr Sci 237:77

    Article  CAS  Google Scholar 

  35. Cohen RD, Probstein RF (1986) J Colloid Interface Sci 114:194

    Article  CAS  Google Scholar 

  36. Elimelech M, Zhu X, Childress AE, Hong S (1997) J Membr Sci 127:101

    Article  CAS  Google Scholar 

  37. Freger V, Gilron J, Belfer S (2002) J Membr Sci 209:283

    Article  CAS  Google Scholar 

  38. Vrijenhoek EM, Hong S, Elimelech M (2001) J Membr Sci 188:115

    Article  CAS  Google Scholar 

  39. Zhang W, He G, Gao P, Chen G (2003) Sep Purif Technol 30:27

    Article  CAS  Google Scholar 

  40. Bowen WR, Doneva TA, Yin H (2002) Desalination 145:39

    Article  CAS  Google Scholar 

  41. Dobrynin AV, Colby RH, Rubinstein M (1995) Macromolecules 28:1895

    Article  Google Scholar 

  42. Bowen WR, Doneva TA, Yin HB (2002) J Membr Sci 206:417

    Article  CAS  Google Scholar 

  43. Bowen WR, Doneva TA, Yin HB (2001) J Membr Sci 181:253

    Article  Google Scholar 

  44. Riedl K, Girard B, Lencki RW (1998) J Membr Sci 139:155

    Article  CAS  Google Scholar 

  45. Huisman IH, Prádanos P, Hernández A (2000) J Membr Sci 179:79

    Article  CAS  Google Scholar 

  46. James BJ, Jing Y, Chen XDJ (2003) J Food Eng 60:431

    Article  Google Scholar 

  47. Murata T, Tanioka A (1997) J Colloid Interface Sci 192:26

    Article  CAS  Google Scholar 

  48. Bowen WR, Doneva TA, Austin J, Stoton AG (2002) Colloids Surf B 27:103

    Article  Google Scholar 

  49. Hilal N, Bowen WR (2002) Desalination 150:289

    Article  CAS  Google Scholar 

  50. Khulbe KC, Hamad F, Feng C, Matsuura T, Khayet M (2004) Desalination 161:259

    Article  CAS  Google Scholar 

  51. Ward RA, Feldhoff PW, Klein E (1985) Membrane materials for therapeutic application in medicines. In: Lloyd DR (ed) Materials science of synthetic membranes. ACS Symposium Series 269. American Chemical Society, Washington, DC, p 99

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Membrane Surface Morphology and Membrane Performance. In: Synthetic Polymeric Membranes. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73994-4_8

Download citation

Publish with us

Policies and ethics