Advertisement

Fast Service Restoration Under Shared Protection at Lightpath Level in Survivable WDM Mesh Grooming Networks

  • Jacek Rak
  • Wojciech Molisz
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1)

Abstract

In this paper, a novel algorithm optimizing the utilization of backup path resources for survivable optical networks, based on graph vertex-coloring approach, is introduced. To the best of our knowledge, this is the first optimization technique, dedicated to WDM grooming networks, such that does not increase the length of backup paths and thus provides fast service restoration. Due to NP-completeness of the proposed Integer Linear Programming model, the respective heuristic algorithm has been developed.

The concept was evaluated for the U.S. Long-Distance Network, European COST 239 Network and Polish PIONIER Network. The results show that with only a little capacity utilization degradation, fast restoration can be achieved and the resource utilization kept at low level. The observed reduction in restoration time values is significant (up to 40%), compared to the typical a priori approach.

Key words

network survivability WDM mesh grooming networks routing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cinkler, T.: Traffic and λ Grooming. IEEE Network 17(2), 16–21 (2003)CrossRefGoogle Scholar
  2. 2.
    Colle, D., et al.: Data-centric optical networks and their survivability. IEEE J. Select. Areas Communications 20, 6–21 (2002)CrossRefGoogle Scholar
  3. 3.
    Dijkstra, E.: A note on two problems in connection with graphs. Numerische Mathematik 1, 269–271 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ellison, R.J., Fisher, D.A., Linger, R.C., Lipson, H.F., Longstaff, T., Mead, N.R.: Survivable network systems: an emerging discipline, Technical Report CMU/SEI-97-TR-013, Carnegie Mellon University, Software Engineering Institute (1997)Google Scholar
  5. 5.
  6. 6.
    Ho, P-H., Tapolcai, J., Cinkler, T.: Segment shared protection in mesh communications networks with bandwidth guaranteed tunnels. IEEE/ACM Transactions on Networking 12(6), 1105–1118 (2004)CrossRefGoogle Scholar
  7. 7.
    Kawamura, R.: Architectures for ATM network survivability. IEEE Communications Surveys 1(1), 2–11 (1998)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Kodialam, M., Lakshman, T.V.: Dynamic routing of locally restorable bandwidth guaranteed tunnels using aggregated link usage information. In: Proc. IEEE INFOCOM'01, pp. 376–385 (2001)Google Scholar
  10. 10.
    Hansen, P.: Graph coloring and applications, American Mathematical Society (1999)Google Scholar
  11. 11.
    Modiano, E., Lin, P.J.: Traffic Grooming in WDM Networks. IEEE Communications Magazine 39(7), 124–129 (2001)CrossRefGoogle Scholar
  12. 12.
    Molisz, W.: Survivability issues in IP-MPLS networks. Systems Science 31(4), 87–106 (2005)zbMATHGoogle Scholar
  13. 13.
    Molisz, W., Rak, J.: Region protection/restoration scheme in survivable networks. In: Gorodetsky, V. Kotenko, I., Skormin, V.A. (eds.) MMM-ACNS 2005. LNCS, vol. 3685, pp. 442–447. Springer, Heidelberg (2005)Google Scholar
  14. 14.
    Mukherjee, B.: WDM Optical Communication Networks: Progress and Challenges. IEEE Journal on Selected Areas in Communications 18(10), 1810–1823 (2000)CrossRefGoogle Scholar
  15. 15.
    Ou, C., et al.: Traffic grooming for survivable WDM networks—shared protection. IEEE Journal on Selected Areas in Communications 21(9), 1367–1383 (2003)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Qiao, Ch., et al.: Novel models for efficient shared path protection, OFC, pp. 545–547 (2002)Google Scholar
  17. 17.
    Rak, J.: Capacity efficient shared protection and fast restoration scheme in self-configured optical networks. In: Keller, A., Martin-Flatin, J.-P (eds.) SelfMan 2006. LNCS, vol. 3996, pp. 142–156, Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Rak, J.: Priority-enabled optimization of resource utilization in fault-tolerant optical networks. In: Gerndt, M., Kranzlmüller, D (eds.) HPCC 2006. LNCS, vol. 4208, pp. 863–873, Springer, Heidelberg (2006)Google Scholar
  19. 19.
    Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, part I—protection. In: Proc. IEEE INFOCOM’99, pp. 744–751 (1999)Google Scholar
  20. 20.
    Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, part II—restoration. In: Proc. IEEE Integrated Circuits Conference’99, pp. 2023–2030 (1999)Google Scholar
  21. 21.
    Wauters, N., Demeester, P.: Design of the optical path layer in multiwavelenth cross connected networks. IEEE Journal on Selected Areas in Communications 1(5), 881–892 (1996)CrossRefGoogle Scholar
  22. 22.
    Xiong, Y., Mason, L.G.: Restoration strategies and spare capacity requirements in self healing ATM networks. IEEE/ACM Transactions on Networking 7(1), 98–110 (1999)CrossRefGoogle Scholar
  23. 23.
    Zhu, K., Mukherjee, B.: Traffic grooming in an optical WDM mesh network. IEEE Journal on Selected Areas in Communications 20, 122–133 (2002)CrossRefGoogle Scholar
  24. 24.
    Zhu, K., Mukherjee, B.: A review of traffic grooming in WDM optical networks: Architectures and challenges. SPIE Opt. Networks Mag. 4(2), 55–64 (2003)Google Scholar
  25. 25.
    Zhu, H., Zang, H., Zhu, K., Mukherjee, B.: A novel generic graph model for traffic grooming in heterogeneous WDM mesh networks. IEEE/ACM Transactions on Networking 11(2), 285–299 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jacek Rak
    • 1
  • Wojciech Molisz
    • 1
  1. 1.Gdansk University of TechnologyGdanskPoland

Personalised recommendations