Advertisement

Mathematical Models of Intrusion Detection by an Intelligent Immunochip

  • Alexander O. Tarakanov
Part of the Communications in Computer and Information Science book series (CCIS, volume 1)

Abstract

Based on mathematical models of immunocomputing, this paper proposes an approach to intrusion detection that allows both low-level signal processing (feature extraction) and high-level (“intelligent”) pattern recognition. The key model is the formal immune network (FIN) including apoptosis (programmed cell death) and immunization both controlled by cytokines (messenger proteins). FIN can be formed from the raw signal using discrete tree transform, singular value decomposition, and the proposed index of inseparability in comparison with the Renyi entropy. The speed and the accuracy of the approach probably mean a further step toward placing more of the intelligent functions on the chip.

Keywords

formal immune network immunochip intrusion detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications. Springer-Verlag, Berlin (1999)zbMATHGoogle Scholar
  2. 2.
    de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer-Verlag, London (2002)zbMATHGoogle Scholar
  3. 3.
    Tarakanov, A.O., Skormin, V.A., Sokolova, S.P.: Immunocomputing: Principles and Applications. Springer-Verlag, New York (2003)zbMATHGoogle Scholar
  4. 4.
    Fogel, D.B., Robinson, C.J. (eds.): Computational Intelligence: The Experts Speak. IEEE Press, Piscataway NJ (2004)Google Scholar
  5. 5.
    Dasgupta, D.: Advances in artificial immune systems. IEEE Computational Intelligence Magazine 1/4, 40–49 (2006)Google Scholar
  6. 6.
    Chao, D.L., Davenport, M.P., Forrest, S., Perelson, A.S.: A stochastic model of cytotoxic T cell responses. Journal of Theoretical Biology 228, 227–240 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Dasgupta, D., Krishna-Kumar, K., Wong, D., Berry, M.: Negative selection algorithm for aircraft fault detection. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 1–13. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Dasgupta, D., Gonzalez, F.: Artificial immune systems in intrusion detection. In: Rao Vemuri, V. (ed.) Enhancing Computer Security with Smart Technology, pp. 165–208. Auerbach Publications (2005)Google Scholar
  9. 9.
    Goncharova, L.B., Jacques, Y., Martin-Vide, C., Tarakanov, A.O., Timmis, J.I.: Biomolecular immune-computer: theoretical basis and experimental simulator. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.): ICARIS 2005. LNCS, vol. 3627, pp. 72–85. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Agnati, L.F., Tarakanov, A.O., Ferre, S., Fuxe, K., Guidolin, D.: Receptor-receptor interactions, receptor mosaics, and basic principles of molecular network organization: possible implications for drug development. Journal of Molecular Neuroscience 26/2–3, 193–208 (2005)CrossRefGoogle Scholar
  11. 11.
    Agnati, L.F., Tarakanov, A.O., Guidolin, D.: A simple mathematical model of cooperativity in receptor mosaics based on the “symmetry rule”. BioSystems 80/2, 165–173 (2005)CrossRefGoogle Scholar
  12. 12.
    Goncharova, L.B., Tarakanov, A.O.: Molecular networks of brain and immunity. Brain Research Reviews (in press) (2007)Google Scholar
  13. 13.
    Tarakanov, A., Prokaev, A., Varnavskikh, E.: Immunocomputing of hydroacoustic fields. International Journal of Unconventional Computing (in press) (2007)Google Scholar
  14. 14.
    Atreas, N.D., Karanikas, C.G., Tarakanov, A.O.: Signal processing by an immune type tree transform. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 111–119, Springer, Heidelberg (2003)Google Scholar
  15. 15.
    Tarakanov, A., Nicosia, G.: Foundations of immunocomputing. In: Proc. 1st IEEE Symposium on Foundations of Computational Intelligence (FOCI’07), Honolulu, Hawaii, pp. 503–508 (2007)Google Scholar
  16. 16.
    Tarakanov, A.O., Kvachev, S.V., Sukhorukov, A.V.: A formal immune network and its implementation for on-line intrusion detection. In: Gorodetsky, V., Kotenko, I., Skormin, V.A. (eds.) MMM-ACNS 2005. LNCS, vol. 3685, pp. 394–405. Springer, Heidelberg (2005)Google Scholar
  17. 17.
    Tarakanov, A., Kryukov, I., Varnavskikh, E., Ivanov, V.: A mathematical model of intrusion detection by immunocomputing for spatially distributed security systems. RadioSystems 106, 90–92 (2007) (in Russian)Google Scholar
  18. 18.
    Karanikas, C., Prios, G.: A non-linear discrete transform for pattern recognition of discrete chaotic systems. Solitons and Fractals 17, 195–201 (2003)zbMATHCrossRefGoogle Scholar
  19. 19.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1986)Google Scholar
  20. 20.
    Renyi, A.: On measures of entropy and information. In: Proc. 4th Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 547–561 (1961)MathSciNetGoogle Scholar
  21. 21.
    Bay, S.D.: The UCI KDD Archive Irvine, CA: University of California, Dept. of Information and Computer Science (1999), http://kdd.ics.uci.edu Google Scholar
  22. 22.
    Tarakanov, A.O., Goncharova, L.B., Tarakanov, O.A.: A cytokine formal immune network. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J. Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 510–519. Springer, Heidelberg (2005)Google Scholar
  23. 23.
    Johnson, J.E.: Networks, Markov Lie monoids, and generalized entropy. In: Gorodetsky, V., Kotenko, I., Skormin, V.A. (eds.): MMM-ACNS 2005. LNCS, vol. 3685, pp. 129–135. Springer, Heidelberg (2005)Google Scholar
  24. 24.
    Tarakanov, A., Prokaev, A.: Identification of cellular automata by immunocomputing. Journal of Cellular Automata (in press) (2007)Google Scholar
  25. 25.
    Tarakanov, A., Goncharova, L., Gupalova, T., Kvachev, S., Sukhorukov, A.: Immunocomputing for bioarrays. In: Proc. 1st Int. Conf. on Artificial Immune Systems (ICARIS’02), Univ. of Kent at Canterbury, UK, pp. 32–40 (2002)Google Scholar
  26. 26.
    Kozyrev, S.V.: Wavelet theory as p-adic spectral analysis. Izvestia: Mathematics 66(2), 367–376 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Atreas, N.D., Karanikas, C., Polychronidou, P.: Signal analysis on strings for immune-type pattern recognition. Comparative and Functional Genomics 5, 69–74 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Alexander O. Tarakanov
    • 1
  1. 1.St. Petersburg Institute for Informatics and AutomationRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations