Advertisement

Privacy-Preserving Credential Verification for Non-monotonic Trust Management Systems

  • Changyu Dong
  • Giovanni Russello
  • Naranker Dulay
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1)

Abstract

Trust management systems provide a flexible way for performing decentralized security management. However, most trust management systems only support monotonic policies. Compared with nonmonotonic policies, monotonic ones are less flexible and cannot express policies such as “Chinese wall policies” and “separation of duties”. To support non-monotonic policies, trust management systems must be able to correctly identify the credentials which a subject has that are required by the policies. Previous efforts address the problem by letting the system query the issuers directly to verify the possession status of the credentials. But this approach can violate the subject’s privacy. The main contribution of this paper is a cryptographic credential verification scheme for non-monotonic, trust management systems that can correctly identify the credentials that a subject has while also protecting the subject’s privacy. We also analyze the security of the scheme and prove that with correct construction and certain cryptographic assumptions, the scheme is secure.

Keywords

Trust Management Non-monotonic Policy Privacy Cryptography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: SP’ 96: Proceedings of the 1996 IEEE Symposium on Security and Privacy, Washington, DC, USA, pp. 164–173. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  2. 2.
    Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.: Rfc2704: The keynote trust-management system version 2 (1999)Google Scholar
  3. 3.
    Jim, T.: Sd3: A trust management system with certified evaluation. In: P’ 01: Proceedings of the 2001 IEEE Symposium on Security and Privacy, Washington, DC, USA, pp. 106–115. IEEE Computer Society, Press, Los Alamitos (2001)CrossRefGoogle Scholar
  4. 4.
    Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trustmanagement framework. In: SP’ 02: Proceedings of the 2002 IEEE Symposium on Security and Privacy, Washington, DC, USA, pp. 114–130. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  5. 5.
    Hess, A., Seamons, K.E.: An access control model for dynamic client-side content. In: SACMAT’ 03: Proceedings of the eight ACM symposium on Access control models and technologies, pp. 207–216. ACM Press, New York (2003)CrossRefGoogle Scholar
  6. 6.
    Carbone, M., Nielsen, M., Sassone, V.: A formal model for trust in dynamic networks. In: SEFM, pp. 54–61. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  7. 7.
    Blaze, M., Feigenbaum, J., Strauss, M.: Compliance checking in the policymaker trust management system. In: Proceedings of the Second International Conference on Financial Cryptography, London, UK, pp. 254–274. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Seamons, K., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills, H., Yu, L.: Requirements for policy languages for trust negotiation. In: POLICY’ 02: Proceedings of the 3rd International Workshop on Policies for Distributed Systems and Networks (POLICY’02), Washignton, DC, USA, pp. 68–79. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  9. 9.
    Lupu, E.C., Sloman, M.: Conflicts in policy-based distributed systems management. IEEE Trans. Softw. Eng. 25(6), 852–869 (1999)CrossRefGoogle Scholar
  10. 10.
    Jajodia, S., Samarati, P., Subrahmanian, V.S., Bertino, E.: A unified framework for enforcing multiple access control policies. In: SIGMOD’ 97: Proceedings of the 1997 ACM SIGMOD international conference on Management of data, pp. 474–485. ACM Press, New York (1997)CrossRefGoogle Scholar
  11. 11.
    Clark, D.D., Wilson, D.R.: A comparison of commercial and military computer security policies. In: IEEE Symposium on Security and Privacy, pp. 184–195. IEEE Computer Society Press, Los Alamitos (1987)Google Scholar
  12. 12.
    Brewer, D.F.C., Nash, M.J.: The chinese wall security policy. In: IEEE Symposium on Security and Privacy, pp. 206–214. IEEE Computer Society Press, Los Alamitos (1989)CrossRefGoogle Scholar
  13. 13.
    Chu, Y.H., Feigenbaum, J., LaMacchia, B., Resnick, P., Strauss, M.: Referee: trust management for web applications. Comput. Netw. ISDN Syst., 29(8–13), 953–964 (1997) 283252CrossRefGoogle Scholar
  14. 14.
    Li, N., Feigenbaum, J., Grosof, B.N.: A logic-based knowledge representation for authorization with delegation (extended abstract). In: Proceedings of the 1999 IEEE Computer Security Foundations Workshop, pp. 162–174. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  15. 15.
    Herzberg, A., Mass, Y. Mihaeli, J., Naor, D., Ravid, Y.: Access control meets public key infrastructure, or: assigning roles to strangers. In: the 2000 IEEE Symposium on Security and Privacy, Berkeley, CA, pp. 2–14. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  16. 16.
    Czenko, M., Tran, H., Doumen, J., Etalle, S., Hartel, P., den Hartog, J.: Nonmonotonic trust management for p2p applications. Electronic Notes in Theoretical Computer Science 157(3), 113–130 (2006)CrossRefGoogle Scholar
  17. 17.
    Goldreich, O.: Foundations of Cryptography. vol. I. Basic Tools, Cambridge University Press, Cambridge (2001)Google Scholar
  18. 18.
    Goldwasser, S., Bellare, M.: Lecture notes on cryptography http://www-cse.ucsd. edu/users/mihir/papers/gb.pdf
  19. 19.
    Goldreich, O.: Foundations of Cryptography. vol. II. Basic Applications Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  20. 20.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (extended abstract). In: Jr., B.S.K. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Boudot, F., Schoenmakers, B., Traoré, J.: A fair and efficient solution to the socialist millionaries’ problem. Discrete Applied Mathematics 111(1–2), 23–36 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptology 4(3), 161–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar
  24. 24.
    Resnick, P., Miller, J.: Pics: Internet access controls without censorship. Commun. ACM 39(10), 87–93 (1996)CrossRefGoogle Scholar
  25. 25.
    Dung, P.M., Thang, P.M.: Trust negotiation with nonmonotonic access policies. In: Aagesen, F.A., Anutariya, C., Wuwongse, V. (eds.) INTELLCOMM 2004. LNCS, vol. 3283, pp. 70–84. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Winsborough, W.H., Seamons, K.E., Jones, V.E.: Automated trust negotiation. In: DARPA Information Survivability Conference and Exposition, 2000, pp. 88–102. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  27. 27.
    Frikken, K.B., Li, J., Atallah, M.J.: Trust negotiation with hidden credentials, hidden policies, and policy cycles. In: NDSS, The Internet Society (2006)Google Scholar
  28. 28.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Changyu Dong
    • 1
  • Giovanni Russello
    • 1
  • Naranker Dulay
    • 1
  1. 1.Department of ComputingImperial College LondonLondonUK

Personalised recommendations