Skip to main content

Abstract

This Chapter is devoted to autonomous helicopters and particularly to present the MARVIN autonomous helicopter and its control system. The first section of the Chapter overviews autonomous helicopters and their control architectures and existing control methods, and then presents the MARVIN helicopter system. The second section is devoted to the helicopter model. The third section deals with the helicopter control techniques. Finally, some conclusions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ACTeurope. Germany, http://www.acteurope.de

  2. Aero-Tec. CB-5000, Germany. http://www.aero-tec-helicopter.de

  3. Höft & Wessel AG. Hw8615. http://www.hoeft-wessel.com

  4. Buskey, G., Wyeth, G., Roberts, J.: Autonomous helicopter hover using an artificial neural network. In: Proceedings of the IEEE International Conference on Robotics & Automation, Seoul, Korea, May 2001, pp. 1635–1640. IEEE, Los Alamitos (2001)

    Google Scholar 

  5. Cavalcante, C., et al.: Design and tuning of a helicopter fuzzy controller. In: Proceedings of IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1549–1554. IEEE, Los Alamitos (1995)

    Google Scholar 

  6. Komatsu Zenoh Co. Japan. http://www.zenoah.net

  7. COMETS consortium. Real-time coordination and control of multiple heterogeneous unmanned aerial vehicles. IST 34304, 5th Framework Program (2002), http://www.comets-uavs.org

  8. Deeg, C.: Modeling, Simulation, and Implementation of an Autonomously Flying Robot. PhD thesis, Technische Universität Berlin, dissertation.de - Verlag im Internet GmbH (July 2006)

    Google Scholar 

  9. Deeg, C., Musial, M., Hommel, G.: Control and simulation of an autonomously flying model helicopter. In: Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Vehicles, Lisboa, Portugal (2004)

    Google Scholar 

  10. Doherty, P., et al.: The WITAS unmanned aerial vehicle project. In: Proceedings of the 14th European Conference on Artificial Intelligence, Berlin, Germany, pp. 747–755 (2000)

    Google Scholar 

  11. Done, G., Balmford, D.: Bramwell’s Helicopter Dynamics, 2nd edn. Butterworth Heinemann, Amsterdam (April 2001)

    Google Scholar 

  12. Frenzel + Berg Elektronik. Germany. http://www.frenzel-berg.de

  13. Fagg, A.H., et al.: The USC autonomous flying vehicle: An experiment in real-time behaviour-based control. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, July 2003, pp. 1173–1180. IEEE, Los Alamitos (2003)

    Google Scholar 

  14. Fantoni, I., Lozano, R.: Helicopter on a platform. In: Fantoni, I., Lozano, R. (eds.) Non-linear Control for Underactuated Mechanical Systems, Springer, Heidelberg (2002)

    Google Scholar 

  15. Association for Unmanned Vehicles International. International Aerial Robotics Competition: The Robotics Competition of the Millennium. http://avdil.gtri.gatech.edu/AUVS/

  16. Gavrilets, V., et al.: Aggressive maneuvering of small autonomous helicopters: A human-centered approach. The International Journal of Robotics Research 20(10), 795–807 (2001)

    Article  Google Scholar 

  17. Gavrilets, V., Mettler, B., Feron, E.: Non-linear model for a small-size acrobatic helicopter. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, Montreal, Canada (August 2001)

    Google Scholar 

  18. Novatel Inc. Canada. http://www.novatel.ca

  19. SensComp Inc. USA. http://www.senscomp.com/600smartsensor.htm

  20. Isidori, A., Marconi, L., Serrani, A.: Robust nonlinear motion control of a helicopter. In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, December 2001, pp. 4586–4591. IEEE, Los Alamitos (2001)

    Google Scholar 

  21. Johnson, E.N., Kannan, S.K.: Adaptive flight control for an autonomous unmanned helicopter. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, Monterey, CA, number AIAA-2002-4439 (August 2002)

    Google Scholar 

  22. Johnson, W.: Helicopter Theory. Dover Publications, New York (1994)

    Google Scholar 

  23. Kadmiry, B., Bergsten, P., Driankov, D.: Autonomous helicopter using fuzzy-gain scheduling. In: Proceedings of the IEEE International Conference on Robotics & Automation, vol. 3, Seoul, Korea, May 2001, pp. 2980–2985. IEEE, Los Alamitos (2001)

    Google Scholar 

  24. Graupner GmbH & Co. KG. Germany. http://www.graupner.de

  25. Kim, H.J., Shim, D.H.: A flight control system for aerial robots: algorithms and experiments. Control Engineering Practice 11, 1351–1515 (2003)

    Article  Google Scholar 

  26. Kim, S.K., Tilbury, D.M.: Mathematical modeling and experimental identification of a model helicopter. Journal of Robotic Systems 21(3), 95–116 (2004)

    Article  Google Scholar 

  27. Kokam. Korea. http://www.kokam.co.kr/english/index.html

  28. Kondak, K., et al.: Mechanical model and control of an autonomous small size helicopter with a stiff main rotor. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2980–2985. IEEE, Los Alamitos (2004)

    Google Scholar 

  29. Koo, T.J., et al.: Hybrid control of model helicopters. In: Proceedings of the IFAC Workshop on Motion Control, Grenoble, France, pp. 285–290 (1998)

    Google Scholar 

  30. Koo, T.J., Ma, Y., Sastry, S.: Nonlinear control of a helicopter based unmanned aerial vehicle model. IEEE Transactions on Control Systems Technology (2001)

    Google Scholar 

  31. Koo, T.J., Sastry, S.: Output tracking control design of a helicopter model based on approximate linearization. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida, USA, pp. 3635–3640. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  32. Lambda. Europe. http://www.lambdaeurope.com

  33. Leishman, J.G.: Principles of Helicopter Aerodynamics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  34. CompuLab Ltd. Israel. http://www.compulab.co.il

  35. Griffin, M.F., Sugeno, M., Bastian, A.: Fuzzy hierarchical control of an unmanned helicopter. In: Proceedings of the 17th IFSA World Congress, pp. 179–182 (1993)

    Google Scholar 

  36. Madelung, E.: Die mathematischen Hilfsmittel des Physikers, 7th edn. Springer, Heidelberg (1964)

    MATH  Google Scholar 

  37. Maharaj, D.Y.: The application of non-linear control theory to robust behaviour-based control. PhD thesis, Dept of Aeronautics, Imperial College of Science, Technology and Medicine (1994)

    Google Scholar 

  38. Mettler, M., Tischler, M.B., Kanade, T.: System identification modeling of a small-scale unmanned rotorcraft for flight control design. American Helicopter Society Journal (2002)

    Google Scholar 

  39. Microstrain. GX1, USA. http://www.microstrain.com

  40. Montgomery, J.F., Bekey, G.A.: Learning helicopter control through “teaching by showing”. In: Proceedings of the 37th IEEE Conference on Decision and Control, December 1998, IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  41. Montgomery, J.F., Fagg, A.H., Bekey, G.A.: The USC AFV-i: A behavior-based entry in the 1994 international aerial robotics competition. IEEE Expert 10(2), 16–22 (1995)

    Article  Google Scholar 

  42. Musial, M., Brandenburg, U.W., Hommel, G.: MARVIN – technische universität berlin’s flying robot for the IARC Millennial Event. In: Proc. Symposium of the Association for Unmanned Vehicle Systems 2000, Orlando, Florida, USA (2000)

    Google Scholar 

  43. Musial, M., et al.: Orientation sensing for helicopter UAVs under strict resource constraints. In: Proceedings of the First European Micro Air Vehicle Conference (EMAV), Braunschweig, Germany, July 2004, pp. 13–14 (2004)

    Google Scholar 

  44. Hamamatsu Photonics. Japan. http://www.hamamatsu.com

  45. Reichow, R.: Ein robuster Hubschrauber–Flugregler. PhD thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig, Fakultät für Maschinenbau und Elektrotechnik, 29 September (1995)

    Google Scholar 

  46. Remuß, V., Musial, M.: Communication system for cooperative mobile robots using ad-hoc networks. In: Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, Elsevier, Amsterdam (2004)

    Google Scholar 

  47. Remuß, V., Musial, M., Brandenburg, U.W.: BBCS – robust communication system for distributed systems. In: Proc. IEEE International Workshop on Safety, Security and Rescue Robotics (SSRR), May 2004, IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  48. Shim, H., et al.: A comprehensive study of control design of an autonomous helicopter. In: Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida, USA, July 1998, pp. 3653–3658. IEEE, Los Alamitos (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Aníbal Ollero Iván Maza

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Remuß, V. et al. (2007). Autonomous Helicopters. In: Ollero, A., Maza, I. (eds) Multiple Heterogeneous Unmanned Aerial Vehicles. Springer Tracts in Advanced Robotics, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73958-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73958-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73957-9

  • Online ISBN: 978-3-540-73958-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics