Skip to main content

Learning Models of Predicate Logical Theories with Neural Networks Based on Topos Theory

  • Chapter
Perspectives of Neural-Symbolic Integration

Part of the book series: Studies in Computational Intelligence ((SCI,volume 77))

This chapter presents an approach to learn first-order logical theories with neural networks. We discuss representation issues for this task in terms of a variable-free representation of predicate logic using topos theory and the possibility to use automatically generated equations (induced by the topos) as input for a neural network. Besides the translation of first-order logic into a variable-free representation, a programming language fragment for representing variable-free logic, the structure of the used neural network for learning, and the overall architecture of the system are discussed. Finally, an evaluation of the approach is presented by applying the framework to theorem proving problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnden J. A. (1989). Neural net implementation of complex symbol process-ing in a mental model approach to syllogistic reasoning, in Proceedings of the International Joint Conference on Artificial Intelligence, 568-573.

    Google Scholar 

  2. Shastri L., Ajjanagadde V. (1990). From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony, Behavioral and Brain Sciences 16: 417-494.

    Article  Google Scholar 

  3. Pollack J. (1990). Recursive Distributed Representations Artificial Intelligence 46(1):77-105.

    Google Scholar 

  4. Rojas, R. (1996). Neural Networks - A Systematic Introduction, Springer, Berlin, New York.

    MATH  Google Scholar 

  5. Steinbach B., Kohut R. (2002). Neural Networks - A Model of Boolean Functions. In Steinbach B (ed.): Boolean Problems, Proceedings of the 5th Interna- tional Workshop on Boolean Problems, 223-240, Freiberg.

    Google Scholar 

  6. Lange T., Dyer M. G. (1989). High-level inferencing in a connectionist network. Technical report UCLA-AI-89-12.

    Google Scholar 

  7. Smolenski P. (1990). Tensor product variable binding and the representation of symbolic structures in connectionist systems, Artificial Intelligence 46(1-2): 159-216.

    Article  MathSciNet  Google Scholar 

  8. Plate T. (1994). Distributed Representations and Nested Compositional Structure. PhD thesis, University of Toronto.

    Google Scholar 

  9. Hitzler P., Hölldobler S., Seda A. (2004). Logic programs and connectionist networks. Journal of Applied Logic, 2(3):245-272.

    Article  MATH  MathSciNet  Google Scholar 

  10. Healy M., Caudell T. (2004). Neural Networks, Knowledge and Cognition: A Mathematical Semantic Model Based upon Category Theory, University of New Mexico, EECE-TR-04-020.

    Google Scholar 

  11. D’Avila Garcez A., Broda K., Gabbay D. (2002). Neural-Symbolic Learning Systems: Foundations and Applications. Springer-Verlag.

    Google Scholar 

  12. Gust H., Kühnberger K.-U. (2004). Cloning Composition and Logical Infer-ence in Neural Networks Using Variable-Free Logic. In: AAAI Fall Symposium Series 2004, Symposium: Compositional Connectionism in Cognitive Science, Washington D.C., 25-30.

    Google Scholar 

  13. Gust H., Kühnberger K.-U. (2005.) Learning Symbolic Inferences with Neural Networks. In: Bara B., Barsalou L., Bucciarelli M. (eds): CogSci 2005, XXVII Annual Conference of the Cognitive Science Society. Lawrence Erlbaum, 875-880.

    Google Scholar 

  14. Goldblatt R. (1979). Topoi: The Categorial Analysis of Logic. Studies in Logic and the Foundations of Mathematics, 98 (1979), North-Holland, Amsterdam.

    Google Scholar 

  15. Montague R. (1970). Pragmatics and intensional logic. Synthèse 22:68-94. Reprinted in: Formal Philosophy. Selected Papers of Richard Montague. Edited and with an introduction by Richmond H. Thomason. New Haven/London: Yale University Press, 1974, 119-147.

    Google Scholar 

  16. Rydeheard D. E., Burstall R. M. (1988). Computational Category Theory, Prentice Hall.

    Google Scholar 

  17. Gust H. (2000). Quantificational Operators and their Interpretation as Higher Order Operators. In Böttner M., Thümmel W. (eds) Variable-free Semantics. Secolo, Osnabrück, 132-161.

    Google Scholar 

  18. Gust H. (2006). A sorted logical language with variable patterns. In Bab, S, Gulden, J, Noll, T, Wieczorek, T (eds): Models and Human Reasoning, Wis-senschaft und Technik Verlag, Berlin, 35-62.

    Google Scholar 

  19. Walter C. (1985). A Mechanical Solution of Schubert’s Steamroller by Many-Sorted Resolution. Artificial Intelligence 26: 217-224.

    Article  MathSciNet  Google Scholar 

  20. Urquhart A. (2001). Basic many-valued logic. In Gabbay D., Guenthner F. (eds.), Handbook of Philosophical Logic, 2nd ed., vol. 2, Kluwer Acad. Publ., Dordrecht, pp. 249-295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gust, H., Kühnberger, KU., Geibel, P. (2007). Learning Models of Predicate Logical Theories with Neural Networks Based on Topos Theory. In: Hammer, B., Hitzler, P. (eds) Perspectives of Neural-Symbolic Integration. Studies in Computational Intelligence, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73954-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73954-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73953-1

  • Online ISBN: 978-3-540-73954-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics