Skip to main content

Largest Bounding Box, Smallest Diameter, and Related Problems on Imprecise Points

  • Conference paper
Algorithms and Data Structures (WADS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4619))

Included in the following conference series:

Abstract

Imprecise points are regions in which one point should be placed. We study computing the largest and smallest possible values of various basic geometric measures on sets of imprecise points, such as the diameter, width, closest pair, smallest enclosing circle, and smallest enclosing bounding box. We give efficient algorithms for most of these problems, and identify the hardness of others.

This research was partially supported by the Netherlands Organisation for Scientific Research (NWO) through the project GOGO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abellanas, M., Hurtado, F., Ramos, P.A.: Structural tolerance and Delaunay triangulation. Inf. Proc. Lett. 71, 221–227 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Averbakh, I., Bereg, S.: Facility location problems with uncertainty on the plane. Discrete Optimization 2, 3–34 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cabello, S.: Approximation algorithms for spreading points. Journal of Algorithms (to appear)

    Google Scholar 

  4. Colley, P., Meijer, H., Rappaport, D.: Optimal nearly-similar polygon stabbers of convex polygons. In: Proc. 6th Canad. Conf. Comput. Geom., pp. 269–274 (1994)

    Google Scholar 

  5. Fiala, J., Kratochvil, J., Proskurowski, A.: Systems of distant representatives. Discrete Applied Mathematics 145, 306–316 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Guibas, L.J., Salesin, D., Stolfi, J.: Constructing strongly convex approximate hulls with inaccurate primitives. Algorithmica 9, 534–560 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jadhav, S., Mukhopadhyay, A., Bhattacharya, B.K.: An optimal algorithm for the intersection radius of a set of convex polygons. J. Algorithms 20, 244–267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Löffler, M., van Kreveld, M.: Largest and smallest tours and convex hulls for imprecise points. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 375–387. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Megiddo, N.: On the ball spanned by balls. Discrete Comput. Geom. 4, 605–610 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Nagai, T., Tokura, N.: Tight error bounds of geometric problems on convex objects with imprecise coordinates. In: Proc. Jap. Conf. on Discrete and Comput. Geom., pp. 252–263 (2000)

    Google Scholar 

  11. Nagai, T., Yasutome, S., Tokura, N.: Convex hull problem with imprecise input. In: Akiyama, J., Kano, M., Urabe, M. (eds.) Discrete and Computational Geometry. LNCS, vol. 1763, pp. 207–219. Springer, Heidelberg (2000)

    Google Scholar 

  12. Rappaport, D.: A convex hull algorithm for discs, and applications. Comput. Geom. Theory Appl. 1(3), 171–181 (1992)

    MATH  MathSciNet  Google Scholar 

  13. Robert, J., Toussaint, G.: Computational geometry and facility location. Technical Report SOCS 90.20, McGill Univ., Montreal, PQ (1990)

    Google Scholar 

  14. Welzl, E.: Smallest enclosing discs (balls and ellipsoids). In: Maurer, H.A. (ed.) New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  15. Yap, C.K.: An O(n logn) algorithm for the Voronoi diagram of a set of simple curve segments. Discrete Comput. Geom. 2, 365–393 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank Dehne Jörg-Rüdiger Sack Norbert Zeh

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Löffler, M., van Kreveld, M. (2007). Largest Bounding Box, Smallest Diameter, and Related Problems on Imprecise Points. In: Dehne, F., Sack, JR., Zeh, N. (eds) Algorithms and Data Structures. WADS 2007. Lecture Notes in Computer Science, vol 4619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73951-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73951-7_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73948-7

  • Online ISBN: 978-3-540-73951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics