Skip to main content

Scanning Fluorescence Correlation Spectroscopy

  • Chapter
Single Molecules and Nanotechnology

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 12))

Fluorescence correlation techniques are used to investigate photophysical, photochemical, interaction and transport properties of fluorescent or fluorescently labelled molecules at extremely low concentrations by analyzing the fluctuations of the measured fluorescence signal. Since their introduction more than thirty years ago, many variations of fluorescence correlation techniques have been developed. They range from the original and the most widely applied Fluorescence Correlation Spectroscopy analyzing temporal fluctuations at a fixed position and suitable for the investigation of molecules in motion to Image Correlation Spectroscopy analyzing spatial correlations of immobile species. Scanning Fluorescence Correlation Spectroscopy is a group of correlation techniques where the measurement volume is moved across the sample in a defined way, resulting in a spatiotemporal correlation of the detected fluorescence. Scanning improves the accuracy of measurements on slowly moving molecules, diminishes the negative effects of photobleaching, and allows measurements on systems where other fluorescence correlation approaches perform poorly or are not possible. This chapter discusses scanning FCS in its relation to other fluorescence correlation methods, describes different variations of scanning FCS, summarizes some of the applications, and finally presents an example of experimental setup designed for two-photon scanning FCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. J. Adrian. Particle-imaging techniques for experimental fluid-mechanics. Annu. Rev. Fluid Mech., 23:261–304, 1991.

    Article  ADS  Google Scholar 

  • A. Amediek, E. Haustein, D. Scherfeld, and P. Schwille. Scanning dual-color cross-correlation analysis for dynamic co-localization studies of immobile molecules. Single Molecules, 3(4):201–210, 2002.

    Article  CAS  ADS  Google Scholar 

  • K. Bacia and P. Schwille. A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy. Methods, 29(1):74–85, 2003.

    Article  PubMed  CAS  Google Scholar 

  • M. L. Barcellona, S. Gammon, T. Hazlett, M. A. Digman, and E. Gratton. Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes. Microsc. Res. Tech., 65(4–5):205–217, 2004.

    Article  PubMed  CAS  Google Scholar 

  • K. M. Berland, P. T. C. So, Y. Chen, W. W. Mantulin, and E. Gratton. Scanning two-photon fluctuation correlation spectroscopy: Particle counting measurements for detection of molecular aggregation. Biophys. J., 71(1):410–420, 1996.

    Article  PubMed  CAS  Google Scholar 

  • M. Brinkmeier, K. Dorre, J. Stephan, and M. Eigen. Two beam cross correlation: A method to characterize transport phenomena in micrometer-sized structures. Anal. Chem., 71(3):609–616, 1999.

    Article  CAS  Google Scholar 

  • C. M. Brown and N. O. Petersen. An image correlation analysis of the distribution of clathrin associated adaptor protein (AP-2) at the plasma membrane. J. Cell Sci., 111:271–281, 1998.

    PubMed  CAS  Google Scholar 

  • Y. Chen, J. D. Müller, P. T. C. So, and E. Gratton. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J., 77(1):553–567, 1999.

    Article  PubMed  CAS  Google Scholar 

  • M. A. Digman, C. M. Brown, P. Sengupta, P. W. Wiseman, A. R. Horwitz, and E. Gratton. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J., 89(2):1317–1327, 2005a.

    Article  PubMed  CAS  Google Scholar 

  • M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton. Fluctuation correlation spectroscopy with a laser-scanning microscope: Exploiting the hidden time structure. Biophys. J., 88(5):L33–L36, 2005b.

    Article  PubMed  CAS  Google Scholar 

  • P. S. Dittrich and P. Schwille. Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation. Appl. Phys. B, 73(8):829–837, 2001.

    Article  CAS  ADS  Google Scholar 

  • S. Felekyan, R. Kuhnemuth, V. Kudryavtsev, C. Sandhagen, W. Becker, and C. A. M. Seidel. Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection. Rev. Sci. Instrum., 76(8):083104, 2005.

    Article  ADS  Google Scholar 

  • M. Gosch and R. Rigler. Fluorescence correlation spectroscopy of molecular motions and kinetics. Adv. Drug Deliv. Rev., 57(1):169–190, 2005.

    Article  PubMed  Google Scholar 

  • B. Hebert, S. Costantino, and P. W. Wiseman. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J., 88(5):3601–3614, 2005.

    Article  PubMed  CAS  Google Scholar 

  • S. T. Hess, S. H. Huang, A. A. Heikal, and W. W. Webb. Biological and chemical applications of fluorescence correlation spectroscopy: A review. Biochemistry, 41(3):697–705, 2002.

    Article  PubMed  CAS  Google Scholar 

  • P. Kask, K. Palo, D. Ullmann, and K. Gall. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc. Natl. Acad. Sci. U.S.A., 96(24):13756–13761, 1999.

    Article  PubMed  CAS  ADS  Google Scholar 

  • K. König. Multiphoton microscopy in life sciences. J. Microsc., 200:83–104, 2000.

    Article  PubMed  Google Scholar 

  • D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson. Scanning concentration correlation spectroscopy using the confocal laser microscope. Biophys. J., 66(2):502–507, 1994.

    Article  PubMed  CAS  ADS  Google Scholar 

  • O. Krichevsky and G. Bonnet. Fluorescence correlation spectroscopy: The technique and its applications. Rep. Prog. Phys., 65(2):251–297, 2002.

    Article  CAS  ADS  Google Scholar 

  • D. Magatti and F. Ferri. Fast multi-tau real-time software correlator for dynamic light scattering. Appl. Opt., 40(24):4011–4021, 2001.

    Article  PubMed  CAS  ADS  Google Scholar 

  • T. Meyer and H. Schindler. Particle counting by fluorescence correlation spectroscopy - simultaneous measurement of aggregation and diffusion of molecules in solutions and in membranes. Biophys. J., 54(6):983–993, 1988.

    Article  PubMed  CAS  Google Scholar 

  • M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff. Dispersion precompensation of 15 femtosecond optical pulses for high-numerical-aperture objectives. J. Microsc., 191:141–150, 1998.

    Article  PubMed  Google Scholar 

  • D. F. Nicoli, J. Briggs, and V. B. Elings. Fluorescence immunoassay based on long-time correlations of number fluctuations. Proc. Natl. Acad. Sci. U.S.A., 77(8):4904–4908, 1980.

    Article  PubMed  CAS  ADS  Google Scholar 

  • A. G. Palmer and N. L. Thompson. Molecular aggregation characterized by high-order autocorrelation in fluorescence correlation spectroscopy. Biophys. J., 52(2):257–270, 1987.

    Article  PubMed  CAS  Google Scholar 

  • A. G. Palmer and N. L. Thompson. High-order fluorescence fluctuation analysis of model protein clusters. Proc. Natl. Acad. Sci. U.S.A., 86(16):6148–6152, 1989.

    Article  PubMed  CAS  ADS  Google Scholar 

  • N. O. Petersen. Diffusion and aggregation in biological membranes. Can. J. Biochem. Cell Biol., 62(11):1158–1166, 1984.

    Article  PubMed  CAS  Google Scholar 

  • N. O. Petersen. Scanning fluorescence correlation spectroscopy 1. Theory and simulation of aggregation measurements. Biophys. J., 49(4):809–815, 1986.

    Article  PubMed  CAS  ADS  Google Scholar 

  • N. O. Petersen, D. C. Johnson, and M. J. Schlesinger. Scanning fluorescence correlation spectroscopy 2. Application to virus glycoprotein aggregation. Biophys. J., 49(4):817–820, 1986.

    Article  PubMed  CAS  Google Scholar 

  • N. O. Petersen, P. L. Hoddelius, P. W. Wiseman, O. Seger, and K. E. Magnusson. Quantitation of membrane-receptor distributions by image correlation spectroscopy—Concept and application. Biophys. J., 65(3):1135–1146, 1993.

    Article  PubMed  CAS  Google Scholar 

  • W. Reisner, K. J. Morton, R. Riehn, Y. M. Wang, Z. N. Yu, M. Rosen, J. C. Sturm, S. Y. Chou, E. Frey, and R. H. Austin. Statics and dynamics of single DNA molecules confined in nanochannels. Phys. Rev. Lett., 94(19):196101, 2005.

    Article  Google Scholar 

  • R. Rigler and E. S. Elson, editors. Fluorescence Correlation Spectroscopy. Theory and Application. Chemical Physics Series. Springer Verlag, Berlin, 1st edition, 2001.

    Google Scholar 

  • J. V. Rocheleau, P. W. Wiseman, and N. O. Petersen. Isolation of bright aggregate fluctuations in a multipopulation image correlation spectroscopy system using intensity subtraction. Biophys. J., 84(6):4011–4022, 2003.

    Article  PubMed  CAS  Google Scholar 

  • R. D. Roorda, T. M. Hohl, R. Toledo-Crow, and G. Miesenbock. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J. Neurophysiol., 92(1):609–621, 2004.

    Article  PubMed  Google Scholar 

  • Q. Q. Ruan, M. A. Cheng, M. Levi, E. Gratton, and W. W. Mantulin. Spatial-temporal studies of membrane dynamics: Scanning fluorescence correlation spectroscopy (SFCS). Biophys. J., 87(2):1260–1267, 2004.

    Article  PubMed  CAS  Google Scholar 

  • P. Schwille. Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem. Biophys., 34(3):383–408, 2001.

    Article  PubMed  CAS  Google Scholar 

  • P. Schwille, F. J. Meyer-Almes, and R. Rigler. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J., 72(4):1878–1886, 1997.

    Article  PubMed  CAS  Google Scholar 

  • J. P. Skinner, Y. Chen, and J. D. Muller. Position-sensitive scanning fluorescence correlation spectroscopy. Biophys. J., 89(2):1288–1301, 2005.

    Article  PubMed  CAS  Google Scholar 

  • M. Srivastava and N. O. Petersen. Image cross-correlation spectroscopy: A new experimental biophysical approach to measurement of slow diffusion of fluorescent molecules. Methods Cell Sci., 18:47–54, 1996.

    Article  Google Scholar 

  • P. R. St-Pierre and N. O. Petersen. Relative ligand-binding to small or large aggregates measured by scanning correlation spectroscopy. Biophys. J., 58(2):503–511, 1990.

    Article  PubMed  CAS  Google Scholar 

  • P. R. St-Pierre and N. O. Petersen. Average density and size of microclusters of epidermal growth-factor receptors on A431 cells. Biochemistry, 31(9):2459–2463, 1992.

    Article  PubMed  CAS  Google Scholar 

  • N. L. Thompson. Fluorescence correlation spectroscopy. In J. R. Lakowicz, editor, Topics in Fluorescence Spectroscopy, Volume I: Techniques, pages 337–378. Plenum Press, New York, 1991.

    Google Scholar 

  • N. L. Thompson, A. M. Lieto, and N. W. Allen. Recent advances in fluorescence correlation spectroscopy. Curr. Opin. Struct. Biol., 12(5):634–641, 2002.

    Article  PubMed  Google Scholar 

  • M. B. Weissman. Fluctuation spectroscopy. Annu. Rev. Phys. Chem., 32:205–232, 1981.

    Article  CAS  ADS  Google Scholar 

  • M. Weissman, H. Schindler, and G. Feher. Determination of molecular-weights by fluctuation spectroscopy - application to DNA. Proc. Natl. Acad. Sci. U.S.A., 73(8):2776–2780, 1976.

    Article  PubMed  CAS  ADS  Google Scholar 

  • J. Widengren and R. Rigler. Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy. Bioimaging, 4:149–157, 1996.

    Article  CAS  Google Scholar 

  • T. Winkler, U. Kettling, A. Koltermann, and M. Eigen. Confocal fluorescence coincidence analysis: An approach to ultra high-throughput screening. Proc. Natl. Acad. Sci. U.S.A., 96(4):1375–1378, 1999.

    Article  PubMed  CAS  ADS  Google Scholar 

  • P. W. Wiseman and N. O. Petersen. Image correlation spectroscopy. II. Optimization for ultrasensitive detection of preexisting platelet-derived growth factor-beta receptor oligomers on intact cells. Biophys. J., 76(2):963–977, 1999.

    Article  PubMed  CAS  ADS  Google Scholar 

  • P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson. Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J. Microsc., 200:14–25, 2000.

    Article  PubMed  CAS  Google Scholar 

  • P. W. Wiseman, C. M. Brown, D. J. Webb, B. Hebert, N. L. Johnson, J. A. Squier, M. H. Ellisman, and A. F. Horwitz. Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy. J. Cell Sci., 117(23):5521–5534, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Y. Xiao, V. Buschmann, and K. D. Weston. Scanning fluorescence correlation spectroscopy: A tool for probing microsecond dynamics of surface-bound fluorescent species. Anal. Chem., 77(1):36–46, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petrášek, Z., Schwille, P. (2008). Scanning Fluorescence Correlation Spectroscopy. In: Rigler, R., Vogel, H. (eds) Single Molecules and Nanotechnology. Springer Series in Biophysics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73924-1_4

Download citation

Publish with us

Policies and ethics