Skip to main content

Communicable Knowledge in Automated System Identification

  • Chapter
Computational Discovery of Scientific Knowledge

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4660))

Abstract

We describe the program Pret, an engineering tool for nonlinear system identification, which is the task of inferring a (possibly nonlinear) ordinary differential equation model from external observations of a target system’s behavior. Pret has several characteristics in common with programs from the fields of machine learning and computational scientific discovery. However, since Pret is intended to be an engineer’s tool, it makes different choices with regard to the tradeoff between model accuracy and parsimony. The choice of a good model depends on the engineering task at hand, and Pret is designed to let the user communicate the task-specific modeling constraints to the program. Pret’s inputs, its outputs, and its internal knowledge base are instances of communicable knowledge—knowledge that is represented in a form that is meaningful to the domain experts that are the intended users of the program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abelson, H., Eisenberg, M., Halfant, M., Katzenelson, J., Sussman, G.J., Yip, K.: Intelligence in scientific computing. Communications of the ACM 32, 546–562 (1989)

    Article  MathSciNet  Google Scholar 

  • Abelson, H., Sussman, G.J.: The Dynamicist’s Workbench I: Automatic preparation of numerical experiments. In: Symbolic computation: Applications to scientific computing. Frontiers in Applied Mathematics. vol. 5, Society for Industrial and Applied Mathematics, Philadelphia, PA (1989)

    Google Scholar 

  • Addanki, S., Cremonini, R., Penberthy, J.S.: Graphs of models. Artificial Intelligence 51, 145–177 (1991)

    Article  Google Scholar 

  • Beckstein, C., Stolle, R., Tobermann, G.: Meta-programming for generalized Horn clause logic. In: Proceedings of the Fifth International Workshop on Metaprogramming and Metareasoning in Logic, pp. 27–42. Bonn, Germany (1996)

    Google Scholar 

  • Beckstein, C., Tobermann, G.: Evolutionary logic programming with RISC. In: Proceedings of the Fourth International Workshop on Logic Programming Environments, pp. 16–21. Washington, D.C. (1992)

    Google Scholar 

  • Bradley, E.: Autonomous exploration and control of chaotic systems. Cybernetics and Systems 26, 299–319 (1995)

    Article  Google Scholar 

  • Bradley, E., Easley, M.: Reasoning about sensor data for automated system identification. Intelligent Data Analysis 2, 123–138 (1998)

    Article  Google Scholar 

  • Bradley, E., Easley, M., Stolle, R.: Reasoning about nonlinear system identification. Artificial Intelligence 133, 139–188 (2001)

    Article  MATH  Google Scholar 

  • Bradley, E., O’Gallagher, A., Rogers, J.: Global solutions for nonlinear systems using qualitative reasoning. Annals of Mathematics and Artificial Intelligence 23, 211–228 (1998)

    Article  MATH  Google Scholar 

  • Bradley, E., Stolle, R.: Automatic construction of accurate models of physical systems. Annals of Mathematics and Artificial Intelligence 17, 1–28 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Capelo, A., Ironi, L., Tentoni, S.: Automated mathematical modeling from experimental data: An application to material science. IEEE Transactions on Systems, Man and Cybernetics – C 28, 356–370 (1998)

    Article  Google Scholar 

  • Casdagli, M., Eubank, S. (eds.): Nonlinear modeling and forecasting. Addison Wesley, Reading (1992)

    Google Scholar 

  • Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monagan, M.B., Watt, S.M.: Maple V language reference manual. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  • de Kleer, J., Williams, B.C. (eds.): Artificial intelligence. Special Volume on Qualitative Reasoning About Physical Systems II, vol. 51. Elsevier Science, Amsterdam (1991)

    Google Scholar 

  • Džeroski, S., Todorovski, L.: Discovering dynamics: From inductive logic programming to machine discovery. Journal of Intelligent Information Systems 4, 89–108 (1995)

    Article  Google Scholar 

  • Easley, M., Bradley, E.: Generalized physical networks for automated model building. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 1047–1053. Stockholm, Sweden (1999a)

    Google Scholar 

  • Easley, M., Bradley, E.: Reasoning about input-output modeling of dynamical systems. In: Proceedings of the Third International Symposium on Intelligent Data Analysis, pp. 343–355. Amsterdam, The Netherlands (1999b)

    Google Scholar 

  • Easley, M., Bradley, E.: Meta-domains for automated system identification. In: Proceedings of the Eleventh International Conference on Smart Engineering System Design, pp. 165–170. St. Louis, MI (2000)

    Google Scholar 

  • Falkenhainer, B., Forbus, K.D.: Compositional modeling: Finding the right model for the job. Artificial Intelligence 51, 95–143 (1991)

    Article  Google Scholar 

  • Faltings, B., Gelle, E.: Local consistency for ternary numeric constraints. In: Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pp. 392–397. Nagoya, Japan (1997)

    Google Scholar 

  • Faltings, B., Struss, P. (eds.): Recent advances in qualitative physics. MIT Press, Cambridge, MA (1992)

    Google Scholar 

  • Farmer, J., Sidorowich, J.: Predicting chaotic time series. Physical Review Letters 59, 845–848 (1987)

    Article  MathSciNet  Google Scholar 

  • Forbus, K.D.: Qualitative process theory. Artificial Intelligence 24, 85–168 (1984)

    Article  Google Scholar 

  • Forbus, K.D.: Qualitative reasoning. In: Tucker Jr., A.B. (ed.) CRC computer science and engineering handbook, ch. 32, pp. 715–733. CRC Press, Boca Raton, FL (1996)

    Google Scholar 

  • Hogan, A., Stolle, R., Bradley, E.: Putting declarative meta control to work (Technical Report CU-CS-856-98). University of Colorado, Boulder (1998)

    Google Scholar 

  • Huang, K.-M., Żytkow, J.M.: Discovering empirical equations from robot-collected data. In: Foundations of Intelligent Systems (Proceedings of the Tenth International Symposium on Methodologies for Intelligent systems), pp. 287–297. Charlotte, NC (1997)

    Google Scholar 

  • Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic Programming 20, 503–581 (1994)

    Article  MathSciNet  Google Scholar 

  • Juang, J.-N.: Applied system identification. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  • Kuipers, B.J.: Qualitative simulation. Artificial Intelligence 29, 289–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Kuipers, B.J.: Qualitative reasoning: Modeling and simulation with incomplete knowledge. Addison-Wesley, Reading (1992)

    Google Scholar 

  • Kuipers, B.J.: Reasoning with qualitative models. Artificial Intelligence 59, 125–132 (1993)

    Article  Google Scholar 

  • Langley, P.: The computational support of scientific discovery. International Journal of Human-Computer Studies 53, 393–410 (2000)

    Article  MATH  Google Scholar 

  • Langley, P., Simon, H.A., Bradshaw, G.L., Żytkow, J.M. (eds.): Scientific discovery: Computational explorations of the creative processes. MIT Press, Cambridge, MA (1987)

    Google Scholar 

  • Ljung, L. (ed.): System identification; theory for the user. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  • McCarty, L.T.: Clausal intuitionistic logic I. Fixed-point semantics. The Journal of Logic Programming 5, 1–31 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Morrison, F.: The art of modeling dynamic systems. John Wiley & Sons, New York (1991)

    MATH  Google Scholar 

  • Nayak, P.P.: Automated Modeling of Physical Systems (Revised version of Ph.D. thesis, Stanford University). LNCS, vol. 1003. Springer, Heidelberg (1995)

    Google Scholar 

  • Robins, V., Meiss, J., Bradley, E.: Computing connectedness: An exercise in computational topology. Nonlinearity 11, 913–922 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Robins, V., Meiss, J., Bradley, E.: Computing connectedness: Disconnectedness and discreteness. Physica D 139, 276–300 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Stolle, R.: Integrated multimodal reasoning for modeling of physical systems. In: Doctoral dissertation, University of Colorado at Boulder. LNCS, Springer, Heidelberg (to appear, 1998)

    Google Scholar 

  • Stolle, R., Bradley, E.: Multimodal reasoning for automatic model construction. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence, pp. 181–188. Madison, WI (1998)

    Google Scholar 

  • Sussman, G.J., Steele, G.L.: CONSTRAINTS—a language for expressing almost hierarchical descriptions. Artificial Intelligence 14, 1–39 (1980)

    Article  Google Scholar 

  • Todorovski, L., Džeroski, S.: Declarative bias in equation discovery. In: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 376–384. Nashville, TN (1997)

    Google Scholar 

  • Washio, T., Motoda, H., Yuji, N.: Discovering admissible model equations from observed data based on scale-types and identity constraints. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 772–779. Stockholm, Sweden (1999)

    Google Scholar 

  • Weigend, A.S., Gershenfeld, N.S. (eds.): Time series prediction: Forecasting the future and understanding the past. Santa Fe Institute Studies in the Sciences of Complexity, Santa Fe, NM (1993)

    Google Scholar 

  • Weld, D.S., de Kleer, J. (eds.): Readings in qualitative reasoning about physical systems. Morgan Kaufmann, San Mateo CA (1990)

    Google Scholar 

  • Yip, K.: KAM: A system for intelligently guiding numerical experimentation by computer. Artificial Intelligence Series. MIT Press, Cambridge (1991)

    Google Scholar 

  • Żytkow, J.M.: Model construction: Elements of a computational mechanism. In: Proceedings of the Symposium on Artificial Intelligence and Scientific Creativity, pp. 65–71. Edinburgh, UK (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sašo Džeroski Ljupčo Todorovski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stolle, R., Bradley, E. (2007). Communicable Knowledge in Automated System Identification. In: Džeroski, S., Todorovski, L. (eds) Computational Discovery of Scientific Knowledge. Lecture Notes in Computer Science(), vol 4660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73920-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73920-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73919-7

  • Online ISBN: 978-3-540-73920-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics