Skip to main content

Virtual Lagrangian Construction Method for Infinite-Dimensional Systems with Homotopy Operators

  • Conference paper
Lagrangian and Hamiltonian Methods for Nonlinear Control 2006

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 366))

Abstract

This paper presents a general modeling method to construct a virtual Lagrangian for infinite-dimensional systems. If the system is self-adjoint in the sense of the Fretchet derivative, there exists some Lagrangian for a stationary condition of variational problems. A system having such a Lagrangian can be formulated as a field port-Lagrangian system by using a Stokes-Dirac structure on a variational complex. However, it is unknown whether any infinite-dimensional system can be expressed as an Euler-Lagrange equation. Then, we introduce a virtual Lagrangian with a homotopy operator. The virtual Lagrangian defines a self-adjoint subsystem, which is realized by a cancellation of non-self-adjoint error subsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. van der Schaft and B.M. Maschke, (2002), Hamiltonian formulation of distributed-parameter systems with boundary energy flow, Journal of Geometry and Physics, 42, 166–194

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Macchelli, A.J. van der Schaft and C. Melchiorri, (2004). Port Hamiltonian, Formulation of Infinite Dimensional Systems I. Modeling, Proc. 43rd IEEE Conference on Decision and Control, 3762–3767

    Google Scholar 

  3. D. Eberard and B.M. Maschke, (2004), An extension of port Hamiltonian systems with boundary energy flow to irreversible systems: the example of heat conduction. NOLCOS 2004, Stuttgart

    Google Scholar 

  4. G. Nishida and M. Yamakita, (2004), A Higher Order Stokes-Dirac Structure for Distributed-Parameter Port-Hamiltonian Systems, Proc. 2004 American Control Conf., 5004–5009

    Google Scholar 

  5. G. Nishida and M. Yamakita, (2004), Disturbance Structure Decomposition for Distributed-Parameter Port-Hamiltonian Systems, Proc. 43rd IEEE CDC, 2082–2087

    Google Scholar 

  6. D. Eberard, B.M. Maschke and A.J. van der Schaft, (2005), Conservative systems with port on contact manifolds, Proc. IFAC world cong. 2005

    Google Scholar 

  7. G. Nishida and M. Yamakita, (2005), Formal Distributed Port-Hamiltonian Representation of Field Equations Proc. 44th IEEE CDC

    Google Scholar 

  8. J. Douglas, (1941), Solution of the inverse problem of the caluculus of variations, Trans. Amer. Math. Soc., 50, 71–128

    Article  MATH  MathSciNet  Google Scholar 

  9. L.A. Ibort, (1990), On the existence of local and global Lagrangians for ordinary differential equations J. Phys. A: Math. Gen., 23, 4779–4792

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Crampin, W. Sarlet, E. Martĺnez, G.B. Gyrnes, G.E. Prince, (1994), Towards a geometrical understanding of Dauglas’s solution of the inverse problem of the calculus of variations, Inverse Problems, 10, 245–260.

    Article  MATH  MathSciNet  Google Scholar 

  11. A. van der Schaft and P.E. Crouch, (1987), Hamiltonian and self-adjoint control systems, Systems & Control Letters, 8, 289–295

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Fujimoto, J.M.A. Scherpen and W.S. Gray, (2002), Hamiltonian realizations of nonlinear adjoint operators, Automatica, 38, 1769–1775

    Article  MATH  MathSciNet  Google Scholar 

  13. A.J. van der Schaft, (2000), L 2-Gain and Passivity Techniques in Nonlinear Control, Springer-Verlag, London

    MATH  Google Scholar 

  14. I. Dorfman, (1993), Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley, Chichester

    Google Scholar 

  15. D.G.B. Edelen, (1985), Applied Exterior Calculus, John Wiley & Sons, Inc.

    Google Scholar 

  16. D.J. Saunders (1989), The Geometry of Jet Bundles, Cambridge Univ. Press, Cambridge

    MATH  Google Scholar 

  17. P.J. Olver, (1993), Applications of Lie Groups to Differential Equations: Second Edition, Springer-Verlag, New York

    MATH  Google Scholar 

  18. S. Morita, (2001), Geometry of Differential Forms, A.M.S.

    Google Scholar 

  19. S. Mac Lane, (1998), Categories for the working Mathematician, 2nd ed., Springer-Verlag

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nishida, G., Yamakita, M., Luo, Z. (2007). Virtual Lagrangian Construction Method for Infinite-Dimensional Systems with Homotopy Operators. In: Allgüwer, F., et al. Lagrangian and Hamiltonian Methods for Nonlinear Control 2006. Lecture Notes in Control and Information Sciences, vol 366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73890-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73890-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73889-3

  • Online ISBN: 978-3-540-73890-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics