Skip to main content

An Algorithm to Discretize One-Dimensional Distributed Port Hamiltonian Systems

  • Conference paper
Lagrangian and Hamiltonian Methods for Nonlinear Control 2006

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 366))

Abstract

A key issue when dealing with distributed parameter systems is the solution of the set of partial differential equations that compose the system model. Even if we restrict our analysis to the linear case, it is often impossible to find a closedform solution for this kind of equations, especially in control applications, where the forcing action on the system generates time-varying boundary conditions. Therefore, numerical solvers play a key role as support tools for the analysis of this kind of systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bossavit. Differential forms and the computation of fields and forces in electromagnetism. European Journal of Mechanics, B/Fluids., 10(5):474–488, 1991.

    MATH  MathSciNet  Google Scholar 

  2. R. F. Curtain and H. J. Zwart. An introduction to infinite dimensional linear systems theory Springer-Verlag, New York, 1995.

    MATH  Google Scholar 

  3. M. Dalsmo and A. J. van der Schaft. On representation and integrability of mathematical structures in energy-conserving physical systems. SIAM J. Control and Optimization, (37):54–91, 1999.

    Google Scholar 

  4. T. Frankel. The Geometry of Physics. An Introduction. Cambridge University Press. 2nd edition, 2003.

    Google Scholar 

  5. G. Golo, V. Talasila, and A. J. van der Schaft. A Hamiltonian formulation of the Timoshenko beam model. In Proc. of Mechatronics 2002. University of Twente, June 2002.

    Google Scholar 

  6. G. Golo, V. Talasila, A. J. van der Schaft, and B. M. Maschke. Hamiltonian discretization of boundary control systems. Automatica 40(5):757–771, May 2004.

    Article  MATH  MathSciNet  Google Scholar 

  7. Y. Le Gorrec, H. Zwart, and B. J. Maschke. A semigroup approach to port Hamiltonian systems associated with linear skew symmetric operator. In Proc. Sixteenth International Symposium on Mathematical Theory of Networks and Systems (MTNS2004), Leuven, 2004.

    Google Scholar 

  8. A. Macchelli. Port Hamiltonian systems. A unified approach for modeling and control finite and infinite dimensional physical systems. PhD thesis, University of Bologna—DEIS, 2003. Available at http://www-lar.deis.unibo.it/woda/spider/e499.htm.

  9. A. Macchelli and C. Melchiorri. Modeling and control of the Timoshenko beam. The distributed port Hamiltonian approach. SIAM Journal on Control and Optimization (SICON) 43(2):743–767, 2004

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Macchelli, C. Melchiorri, and L. Bassi. Port-based modelling and control of the Mindlin plate. In Proc. 44th IEEE Conference on Decision and Control and European Control Conference 2005 (CDC-ECC’05), December 12–15 2005

    Google Scholar 

  11. A. Macchelli, S. Stramigioli, and C. Melchiorri. Network modelling and simulation of robots with flexible links A port-based approach. In Proc. 17th International Symposium on Mathematical Theory of Networks, and Systems (MTNS2006) 2006.

    Google Scholar 

  12. A. Macchelli, A. J. van der Schaft, and C. Melchiorri. Multi-variable port Hamiltonian model of piezoelectric material. In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’04, 2004.

    Google Scholar 

  13. A. Macchelli, A. J. van der Schaft, and C. Melchiorri. Port Hamiltonian formulation of infinite dimensional systems. I. Modeling. In Proc. 43th IEEE Conference on Decisions and Control (CDC04), December 14–17 2004.

    Google Scholar 

  14. A. J. van der Schaft L 2-Gain and Passivity Techniques in Nonlinear Control. Communication and Control Engineering. Springer Verlag, 2000.

    Google Scholar 

  15. A. J. van der Schaft and B. M. Maschke. Hamiltonian formulation of distributed parameter systems with boundary energy flow. Journal of Geometry and Physics, 42 (1–2):166–194, May 2002.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bassi, L., Macchelli, A., Melchiorri, C. (2007). An Algorithm to Discretize One-Dimensional Distributed Port Hamiltonian Systems. In: Allgüwer, F., et al. Lagrangian and Hamiltonian Methods for Nonlinear Control 2006. Lecture Notes in Control and Information Sciences, vol 366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73890-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73890-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73889-3

  • Online ISBN: 978-3-540-73890-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics