Skip to main content

Optimal Sampling for Complexity in Soil Ecosystems

  • Conference paper
Unifying Themes in Complex Systems IV

Abstract

Complexity in soil biology is a multi-level concept. Soil itself is the result of multiple interactions between physical structure, interface phenomena, soil biota activity, population dynamics, chemical composition, time, and environmental conditions. In turn, the resulting system (the soil) influences all those factors except time. Soil complexity can thus be observed at different physical levels (i.e., frequency distribution of aggregates’ sizes, order of strata, etc.), biological levels (i.e., taxocoenoses, oxidable organic matter availability, population distribution, etc.), interaction levels (i.e. mineral paths between compartments, food web, etc.), or evolutionary levels (short-term variations on water availability, long-term erosion, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  • Caswell, H., & Cohen, J.E., 1993. Local and Regional Regulation of Species-Area Relations-A Patch-Occupancy Model. In: R.E. Ricklefs and D. Schluter (Editors), Species Diversity in Ecological Communities: historical and geographical perspectives. University of Chicago Press, Chicago, pp 99–107.

    Google Scholar 

  • Christen, J.A., & Nakamura, M., 2000. On the Analysis of Accumulation Curves. Biometrics, 56, 748–754.

    Article  MATH  Google Scholar 

  • Colwell, R.K., 2000. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples (Software and User’s Guide), Version 6. http://viceroy.eeb.uconn.edu/estimates

    Google Scholar 

  • Dawson, J.D., 1998. Sample Size Calculations Based on Slopes and Other Summary Statistics. Biometrics, 54: 323–330.

    Article  MATH  Google Scholar 

  • Gauch, Jr., H.G., 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gotelli, N.J., 2001. Research frontiers in null model analysis. Global Ecology & Biogeography, 10, 337–343.

    Article  Google Scholar 

  • Gotelli, N.J. & Colwell, R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379–391

    Article  Google Scholar 

  • Gotelli, N.J. & Entsminger, G.L., 2001. EcoSim: Null models software for ecology. Version 7.0. Acquired Intelligence Inc. & Kesey-Bear. http://homepages.together.net/~gentsmin/ecosim.htm.

    Google Scholar 

  • Jordana R, Arpin P., Vinciguerra M.T., Gonzalez S., Aramburu M.P., Ariño A.H., Armendariz I., Belascoain C., Cifuentes P., Clausi M., Escribano R., Garcia Abril A., Garcia-Mina J.M., Hernandez M., Imaz A., Moraza M.L., Ponge J.F., Puig J. & Ramos A., 2000. Biodiversity across ecotones in desertificable Mediterranean areas. In: Balabanis P., Peter D., Ghazi A., Tsogas M. (Eds).: Mediterranean Desertification Research results and policy implications, Vol 2.: pp 497–505. European Comission EUR 19303.

    Google Scholar 

  • Huston, M.A., 1994. Biological Diversity. The coexistence of species on changing landscapes. Cambridge University Press.

    Google Scholar 

  • Kasprzak, K., 1993. Selected aspects of mathematical statistics. In: M. Górny and L. Grüm (Editors), Methods in Soil Zoology. Elsevier, Amsterdam, pp. 16–69.

    Google Scholar 

  • Krebs, C.J., 1989. Ecological Methodology. Harper & Row, New York.

    Google Scholar 

  • Kurtz, J.C., Jackson, L.E. & Fisher, W.S., 2001. Strategies for evaluating indicators based on guidelines from the Environmental Protection Agency’s Office of Research and Development. Ecological Indicators, 1: 49–60.

    Article  Google Scholar 

  • Magurran, A., 1989. Diversidad ecológica y su medición. Ediciones Vedrà, Barcelona.

    Google Scholar 

  • Mikkelson, G.M., 2001. Complexity and Verisimilitude: Realism for Ecology. Biology and Philosophy, 16: 533–546.

    Article  Google Scholar 

  • Margalef, R., 1980. Ecología. Omega, Barcelona.

    Google Scholar 

  • Peltier A., Ponge J.F., Jordana R. & Ariño A., 2001. Humus forms in Mediterranean scrublands with aleppo pine. Soil Science Society of America Journal, 65(3): 884–896

    Article  Google Scholar 

  • Roszenweig, M.L., 1995. Species diversity in space and time. Cambridge University Press.

    Google Scholar 

  • Turner, W., Leitner, W. & Rosenzweig, M, 2001. WS2M. Software for the measurement and analysis of species diversity (Software and User’s Manual), http://eebweb.arizona.edu/diversity

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 NECSI Cambridge, Massachusetts

About this paper

Cite this paper

Ariño, A.H., Belascoáin, C., Jordana, R. (2008). Optimal Sampling for Complexity in Soil Ecosystems. In: Minai, A.A., Bar-Yam, Y. (eds) Unifying Themes in Complex Systems IV. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73849-7_25

Download citation

Publish with us

Policies and ethics