Skip to main content

Inferring Regulatory Networks from Time Series Expression Data and Relational Data Via Inductive Logic Programming

  • Conference paper
Inductive Logic Programming (ILP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4455))

Included in the following conference series:

Abstract

Determining the underlying regulatory mechanism of genetic networks is one of the central challenges of computational biology. Numerous methods have been developed and applied to the important but complex task of reverse engineering regulatory networks from high-throughput gene expression data. However, many challenges remain. In this paper, we are interested in learning rules that will reveal the causal genes for the expression variation from various relational data sources in addition to gene expression data. Following our previous work where we showed that time series gene expression data could potentially uncover causal effects, we describe an application of an inductive logic programming (ILP) system, to the task of identifying important regulatory relationships from discretized time series gene expression data, protein-protein interaction, protein phosphorylation and transcription factor data about the organism. Specifically, we learn rules for predicting gene expression levels at the next time step based on the available relational data and then generalize the learned theory to visualize a pruned network of important interactions. We evaluate and present experimental results on microarray experiments from Gasch et al on Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: Identification of gene regulatory networks by strategic gene disruptions and gene overexpressions. In: Proc. the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 695–702. ACM Press, New York (1998)

    Google Scholar 

  2. Bryant, C.H., Muggleton, S.H., Oliver, S.G., Kell, D.B., Reiser, P.G.K., King, R.D.: Combining inductive logic programming, active learning, and robotics to discover the function of genes. Electronic Transactions in Artificial Intelligence 6, 1–36 (2001)

    Google Scholar 

  3. Chrisman, L., Langley, P., Bay, S., Pohorille, A.: Incorporating biological knowledge into evaluation of causal regulatory hypotheses. In: Pacific Symposium on Biocomputing (PSB) (January 2003)

    Google Scholar 

  4. Ptacek, J., et al.: Global analysis of protein phosphorylation in yeast. Nature 438, 679–684 (2005)

    Article  Google Scholar 

  5. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology 7(3/4), 601–620 (2000)

    Article  Google Scholar 

  6. Fröhler, S., Kramer, S.: Inductive logic programming for gene regulation prediction. In: Proceedings of the 16th International Conference on Inductive Logic Programming, Santiago de Compostela, Spain, pp. 83–85. University of Corunna (2006)

    Google Scholar 

  7. Gasch, A.P., Huang, M., Metzner, S., Botstein, D., Elledge, S.J., Brown, P.O.: Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell 12, 2987–3003 (2001)

    Google Scholar 

  8. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000)

    Google Scholar 

  9. Güldener, U., Münsterkötter, M., Kastenmüller, G., Strack, N., van Helden, J., Lemer, C., Richelles, J., Wodak, S.J., Garcia-Martinez, J., Perez-Ortin, J.E., Michael, H., Kaps, A., Talla, E., Dujon, B., Andre, B., Souciet, J.L., De Montigny, J., Bon, E., Gaillardin, C., Mewes, H.W.: CYGD: the Comprehensive Yeast Genome Database. Nucleic Acids Research 33, D364–368 (2005)

    Article  Google Scholar 

  10. Harrison, J.C., Haber, J.E.: Surviving the breakup: The DNA damage checkpoint. Annu. Rev. Genet. 40, 209–235 (2006)

    Article  Google Scholar 

  11. Ideker, T.E., Thorsson, V., Karp, R.M.: Discovery of regulatory interactions through perturbation: Inference and experimental design. In: Pacific Symposium on Biocomputing, pp. 302–313 (2000)

    Google Scholar 

  12. Ptacek, J., Snyder, M.: Charging it up: global analysis of protein phosphorylation. Trends in Genetics 22, 545–554 (2006)

    Article  Google Scholar 

  13. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.J.K., Bryant, C.H., Muggleton, S., Kell, D.B., Oliver, S.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  14. Middendorf, M., Kundaje, A., Wiggins, C., Freund, Y., Leslie, C.: Predicting genetic regulatory response using classification. Bioinformatics 20, 232–240 (2004)

    Article  Google Scholar 

  15. Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

    Google Scholar 

  16. Ong, I.M., Glasner, J.D., Page, D.: Modelling regulatory pathways in Escherichia coli from time series expression profiles. Bioinformatics 18, S241–S248 (2002)

    Google Scholar 

  17. Papatheodorou, I., Kakas, A., Sergot, M.: Inference of gene relations from microarray data by abduction. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 389–393. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks from perturbed expression profiles. In: Proceedings of the 9th International Conference on Intelligent Systems for Molecular Biology, pp. 215–224. Oxford University Press, Oxford (2001)

    Google Scholar 

  19. Pe’er, D., Regev, A., Tanay, A.: Minreg: Inferring an active regulator set. In: Proceedings of the 10th International Conference on Intelligent Systems for Molecular Biology, pp. S258–S267. Oxford University Press, Oxford (2002)

    Google Scholar 

  20. Reiser, P.G.K., King, R.D., Kell, D.B., Muggleton, S.H., Bryant, C.H., Oliver, S.G.: Developing a logical model of yeast metabolism. Electronic Transactions in Artificial Intelligence 5, 223–244 (2001)

    Google Scholar 

  21. Segal, E., Shapira, M., Regev, A., Pe’er, D., Botstein, D., Koller, D., Friedman, N.: Module networks: identifying regulatory modules and their condition specific regulators from gene expression data. Nature Genetics 34, 166–176 (2003)

    Article  Google Scholar 

  22. Srinivasan, A.: The Aleph Manual. University of Oxford, Oxford (2001)

    Google Scholar 

  23. Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Research 34, D535–539 (2006)

    Article  Google Scholar 

  24. Struyf, J., Dzeroski, S., Blockeel, H., Clare, A.: Hierarchical multi-classification with predictive clustering trees in functional genomics. In: Progress in Artificial Intelligence: 12th Portugese Conference on Artificial Intelligence, pp. 272–283. Springer, Heidelberg (2005)

    Google Scholar 

  25. Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Muggleton, S.H.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 64, 209–230 (2006)

    Article  MATH  Google Scholar 

  26. Tanay, A., Shamir, R.: Computational expansion of genetic networks. Bioinformatics, 17 (2001)

    Google Scholar 

  27. Teixeira, M.C., Monteiro, P., Jain, P., Tenreiro, S., Fernandes, A.R., Mira, N.P., Alenquer, M., Freitas, A.T., Oliveira, A.L.: The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Research 34, 446–451 (2006)

    Article  Google Scholar 

  28. Tu, Z., Wang, L., Arbeitman, M.N., Chen, T., Sun, F.: An integrative approach for causal gene identification and gene regulatory pathway inference. Bioinformatics, e489–e496 (2006)

    Google Scholar 

  29. Zien, A., Kuffner, R., Zimmer, R., Lengauer, T.: Analysis of gene expression data with pathway scores. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 407–417 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stephen Muggleton Ramon Otero Alireza Tamaddoni-Nezhad

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ong, I.M., Topper, S.E., Page, D., Costa, V.S. (2007). Inferring Regulatory Networks from Time Series Expression Data and Relational Data Via Inductive Logic Programming. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds) Inductive Logic Programming. ILP 2006. Lecture Notes in Computer Science(), vol 4455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73847-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73847-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73846-6

  • Online ISBN: 978-3-540-73847-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics