Skip to main content

Part of the book series: IFMBE Proceedings ((IFMBE,volume 17))

Abstract

Electrical Impedance Tomography has the potential to become a portable non-invasive medical imaging technique. Until now, implementations have neglected anisotropyeven though human tissue like bone, muscle, and braine white matter are markedly anisotropic. We present a numerical solution the finite element method that has been modified for moddeling anisotropic conductive media. It was validated in an anisotropic domain against an analytical solution in an isotropic domain was diffeomorphically transformed into an anisotropic one. Convergence of the finite element to the analytical solution was verified by showing that the finite element error norm decreased linearly related to the finite size, as the mesh density increased, for the simplified case of Laplace`s equation in a cubical domain with a Dirichlet boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. F. P.-J. Abascal and W. R. B. Lionheart. Rank analysis of the anisotropic inverse conductivity problem. In Proc. ICEBI XII-EIT V, pages 511–514, Gdansk, Poland, 2004.

    Google Scholar 

  2. A. P. Bagshaw, A. D. Liston, R. H. Bayford, A. Tizzard, A. P. Gibson, A. T. Tidswell, M. K. Sparkes, H. Dehghani, C. D. Binnie and D. S. Holder (2003) Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method. Neurolmage 20:752–764

    Article  Google Scholar 

  3. L. Borcea (2002) Electrical impedance tomography. Inv Problems 18:R99-R136

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Braess (1997) Finite elements. Cambridge University Press, Cambridge, UK

    Google Scholar 

  5. M. Cheney, D. Isaacson and J. C. Newell (1999) Electrical impedance tomography. SIAM Review 41(1):85–101

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Fabrizi, M. Sparkes, L. Horesh, J. F. P.-J. Abascal, A. McEwan, R. H. Bayford, R. Elwes, C. D. Binnie and D. S. Holder (2006) Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans. Physiol Meas 27:S163-S174

    Article  Google Scholar 

  7. O. Gilad, L. Horesh, G. M. Ahadzi, R. H. Bayford and D. S. Holder (2005) Could synchronized neuronal activity be imaged using Low Frequency Electrical Impedance Tomography (LFEIT)? In 6th Conference on Biomedical Applications of Electrical Impedance Tomography, London, UK, 2005.

    Google Scholar 

  8. M. Glidewell and K. T. Ng. (1995) Anatomically constrained electrical impedance tomography for anisotropic bodies via a two-step approach. IEEE Trans Medical Imaging 14:498–503

    Article  Google Scholar 

  9. M. Glidewell and K. T. Ng. (1997) Anatomically constrained electrical impedance tomography for three-dimensional anisotropic bodies. IEEE Trans Medical Imaging 16(5):572–80

    Article  Google Scholar 

  10. N. D. Harris, A. J. Suggett, D. C. Barber and B. H. Brown (1988) Applied potential tomography: a new technique for monitoring pulmonary function. Clin Phys Physiol Meas 9(Suppl. A):79–85

    Article  Google Scholar 

  11. S. Haueisen, D. S. Tuch, C. Rarnon, P. H. Schirnpf, V. J. Wedeen, S. S. George and J. W. Belliveau (2002) The influence of brain tissue anisotropy on human eeg and meg. NeuroImage, 15(1):159–66

    Article  Google Scholar 

  12. J. Kevorkian (2000) Partial differential equations: analytical solution techniques. Springer-Verlag, New York

    MATH  Google Scholar 

  13. P. M. Knupp (2003) Algebraic mesh quality metrics for unstructured initial meshes. Finite Elements in Analysis and Design 39(3):217–241

    Article  MATH  Google Scholar 

  14. R. V. Kohn and M. Vogelius (1984) Determining conductivity by boundary measurements, interior results II. Commum Pure Appl Math 37:281–298

    MathSciNet  Google Scholar 

  15. R. V. Kohn and M. Vogelius (1985) Determining conductivity by boundary measurements, interior results II. Commum Pure Appl Math 38:643–667

    Article  MATH  MathSciNet  Google Scholar 

  16. J. M. Lee and G. Uhlmann (1989) Determining anisotropic real-analytical conductivities by boundary measurements. Commum Pure Appl Math 38:643467

    MathSciNet  Google Scholar 

  17. W. R. B. Lionheart (1997) Conformal uniqueness results in anisotropic electrical impedance imaging. Inv Problems 13:125–34

    Article  MATH  MathSciNet  Google Scholar 

  18. W. R. B. Lionheart (2004) EIT reconstruction algorithms: pitfalls, challenges and recent developments. Physiol Meas 25:125–142

    Article  Google Scholar 

  19. Y. F, Mangall, A. Baxter, R. Avill, N. Bird, B. Brown, B. D, A. Seager and A. Johnson (1987) Applied potential tomography: a new non-invasive technique for assessing gastric function. Clin Phys Physiol Meas 8:119–129

    Article  Google Scholar 

  20. P. Metherall, D. C. Barber, R. H. Smallwood and B. H. Brown (1996) Three-dimensional electrical impedance tomography. Nature 380:509–512

    Article  Google Scholar 

  21. C. C. Pain, J. V. Herwanger, J. H. Saunders, M. H. Worthington and Cassiano R E de Oliviera (2003) Anisotropic and the art of resistivity tomography. Inv Problems 19: 1081–1111

    Article  MATH  Google Scholar 

  22. K. Paulson, W. Breckon and M. Pidcock (1992) Electrode modelling in electrical impedance tornography. SIAM J Appl Math 52:1012–1022

    Article  MATH  Google Scholar 

  23. N. Polydorides and W. R. B. Lionheart (2002) A Matlab toolkit for threedimensional electrical impedance Tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project. Meas Sci Technol 13: 1871–1883

    Article  Google Scholar 

  24. A. Rornsauerova, A. M. Ewan, L. Horesh, R. Yerworth, R. H. Bayford and D. S. Holder (2006) Multi-frequency electrical irnpedance tomography (EIT) of the adult human head: initial findings in brain tumours, arteriovenous malformations and chronic stroke, development of an analysis method and calibration. Physiol Meas 27(5):S147-S161

    Article  Google Scholar 

  25. E. Somersalo, M. Cheney and D. Isaacson (1992) Existence and uniqueness for electrode models for electric current computed tomography. SIAM J Appl Math 52(4):1023–1040

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Sylvester and G. Uhlmann (1987) A global uniqueness theorem for an inverse boundary value problem. Annals of Muth 125:153–169

    Article  MathSciNet  Google Scholar 

  27. D. S. Tuch (2002) Diffusion MRI of complex tissue structure. PhD thesis, Massachusetts Institute of Technology, Massachusetts

    Google Scholar 

  28. H. J. Weber and G. B. Arfken (2004) Essential mathematical methods,for physicists. Elsevier Academic Press, London, UK

    Google Scholar 

  29. C. H. Wolters (2003) Influence of tissue conductivity inhomogeneity and anisotropy on EEG/EMG based souwe localization in the human brain. PhD thesis, University of Leipzig, Leipzig, Germany

    Google Scholar 

  30. C. H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M. A. Koch and R. S. MacLeod (2006) Influence of tissue conductivity anisotropy on EEG/EMG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling. NeuroImage 30(3):813–826

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abascal, JF., Arridge, S., Lionheart, W., Bayford, R., Holder, D. (2007). Validation of a finite element solution for electrical impedance tomography in an anisotropic medium. In: Scharfetter, H., Merwa, R. (eds) 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography. IFMBE Proceedings, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73841-1_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73841-1_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73840-4

  • Online ISBN: 978-3-540-73841-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics