Skip to main content

Part of the book series: IFMBE Proceedings ((IFMBE,volume 17))

Abstract

Numerous attempts have been made to improve image reconstruction algorithms in EIT. In contrast, the magnitude of measurement errors of an EIT system was not an exploratory focus in the past. Especially in absolute EIT (a-EIT) where the resistivity of the examined object is determined on an absolute scale the influence of these errors can not be ignored since systematic errors are not cancelled by dividing the raw data by reference data (cf. Sheffield back projection). We present very simple phantoms and provocative adapters for a 16 electrode system using adjacent drive pattern to determine the measurement errors. The trans-impedance of each phantom is determined by only one component and output voltage is constant for all combinations of current injection and measurement. Therefore the electrical properties of the phantoms can be determined fast and precisely. Input and output impedance can be chosen independently of output voltage similar to that of the human thorax. Parameters like the absolute error of each driving/sensing channel, signal to noise ratio in each channel and especially the several kinds of crosstalk can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hahn G, Frerichs I, Beer M, Schröder T, Hellige G (1999) Evaluation of the performance of electrical impedance tomography systems. Med Biol Eng Comput 37:122-123

    Google Scholar 

  2. Hahn G, Beer M, Frerichs I, Dudykevych T, Schröder T, Hellige G (2000) A simple method to check the dynamic performance of electrical impedance tomography systems. Physiological Measurement 21:53-60

    Article  Google Scholar 

  3. Hahn G, Dudykevych T, Frerichs I, Thiel F, Hellige G (2002) A high performance electrical impedance tomography (EIT) system for clinical evaluation studies and space application. 2nd European Medical & Biological Engineering Conference EMBEC’02, Vienna, Dec 04 - 08. H Hutten and P Krösl (Graz: Verlag der TU Graz), 110-111

    Google Scholar 

  4. Griffiths H, Zhang Z (1989) A dual-frequency electrical impedance tomography system. Physics in medicine and biology 34:1465-1476

    Article  Google Scholar 

  5. McEwan A, Romsauerova A, Yerworth R, Horesh L, Bayford R, Holder D (2006) Design and calibration of a compact multi-frequency EIT system for acute stroke imaging. Physiol Meas 27:S199-210

    Article  Google Scholar 

  6. Yerworth RJ, Bayford RH, Cusick G, Conway M, Holder DS (2002) Design and performance of the UCLH mark 1b 64 channel electrical impedance tomography (EIT) system, optimized for imaging brain function. Physiol Meas 23:149-158

    Article  Google Scholar 

  7. Griffiths H (1988) A phantom for electrical impedance tomography. Clin Phys Physiol Meas 9(Suppl A):15-20

    Article  Google Scholar 

  8. Griffiths H (1995) A Cole phantom for EIT. Physiol Meas 16:A29-38

    Article  Google Scholar 

  9. Griffiths H, Williams RJ (1997) The Cardiff Cole Phantom - A comparison of its theoretical and practical characteristics. World Congress on Medical Physics and Biomedical Engineering, Nice, 328

    Google Scholar 

  10. Rigaud B, Chauveau N, Ayeva B, Fargues F, Martinez E, Morucci J-P (1996) Modular Cole phantom for parametric electrical impedance tomography. IEEE Engineering in Medicine and Biology Society: 18th Ann Conf, Amsterdam, 372-373

    Google Scholar 

  11. Rigaud B, Morucci JP (1996) Bioelectrical impedance techniques in medicine. Part III: Impedance imaging. First section: general concepts and hardware. Critical reviews in biomedical engineering 24:467-597

    Google Scholar 

  12. Schlappa J, Annese E, Griffiths H (2000) Systematic errors in multi-frequency EIT. Physiol Meas 21:111-118

    Article  Google Scholar 

  13. Schneider ID, Kleffel R, Jennings D, Courtenay AJ (2000) Design of an electrical impedance tomography phantom using active elements. Medical & biological engineering & computing 38:390-394

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hahn, G., Just, A., Hellige, G. (2007). Determination of the dynamic measurement error of EIT systems. In: Scharfetter, H., Merwa, R. (eds) 13th International Conference on Electrical Bioimpedance and the 8th Conference on Electrical Impedance Tomography. IFMBE Proceedings, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73841-1_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73841-1_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73840-4

  • Online ISBN: 978-3-540-73841-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics