Skip to main content

Part of the book series: Genome Mapping and Genomics in Animals ((MAPPANIMAL,volume 3))

  • 1137 Accesses

The pig (Sus scrofa) is an important species both as a food source and as a biomedical model for human biology. Significant progress has been made since the early 1990s to develop pig genetic, physical, and radiation hybrid maps. In addition, numerous quantitative trait loci (QTL) controlling economically important traits in pigs have been discovered. However, the identification of the causative mutations underlying pig QTL has been challenging. Completion of the porcine whole genome sequence and development of a large SNP collection for pigs will aid in the efforts to characterize underlying genetic control of important phenotypes. DNA microarray resources have also been developed for the pig, which not only facilitate transcriptional profiling studies for many biological processes, but also the incorporation of gene expression data into QTL studies will further enhance efforts to identify the genes and causative mutations controlling traits of importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fred-holm M, Hansson I, et al (1994) Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771–1774

    Article  PubMed  CAS  Google Scholar 

  • Archibald A, Haley CS, Andersson L, Bosma AA, Davies W, Fred-holm M, Geldermann H, Gellin J, Groenen M, Gustavsson I, Ollivier L, Tucker EM, Van de Weghe A (1990) PiGMaP: an European initiative to map the porcine genome. Anim Genet 22 (Suppl. 1):82–83

    Google Scholar 

  • Archibald AL, Haley CS, Brown JF, Couperwhite S, McQueen H, Nicholson D, Coppieters W, Van de Weghe A, Stratil A, Wintero AK, et al (1995) The PiGMaP consortium linkage map of the pig (Sus scrofa). Mamm Genome 6:157–175

    Article  PubMed  CAS  Google Scholar 

  • Bendixen C, Gregersen V, Hedegaard J, Conley L, Hoj A, Panitz F (2006) Genetics of porcine gene expression. Proc 30th Intl Conf Anim Genet, Porto Seguro, Brazil, August 20–25, C444

    Google Scholar 

  • Carlborg O, Hocking PM, Burt DW, Haley CS (2004) Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth. Genetical Res 83:197–209

    Article  CAS  Google Scholar 

  • Carlborg O, Brockmann GA, Haley CS (2005) Simultaneous mapping of epistatic QTL in DU6i × DBA/2 mice. Mamm Genome 16:481–494

    Article  PubMed  CAS  Google Scholar 

  • Chen K, Baxter T, Muir WM, Groenen MA, Schook LB (2007) Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int J Biol Sci 3:153–165

    Article  PubMed  Google Scholar 

  • Ciobanu DC, Bastiaansen J, Malek M, Helm J, Woollard J, Plas-tow GS, Rothschild MF (2001) Evidence for new alleles in the protein kinase AMP-activated, subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics 159:1151–1162

    PubMed  CAS  Google Scholar 

  • Couture O, Zhao X, Zhao SH, Recknor J, Lkhagvadorj S, Qu L, Nettleton D, Dekkers J, Tuggle C (2006) Improved annotation of the porcine Affymetrix GeneChip® and functional comparison to QIAGEN-NRSP8 oligonucleotide array data. Proc 30th Intl Conf Anim Genet, Porto Seguro, Brazil, August 20–25, E246

    Google Scholar 

  • Dekkers JC (2004) Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci 82 (E-Suppl):E313–328

    PubMed  Google Scholar 

  • Dekkers JC, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nature Rev Genet 3:22–32

    Article  CAS  PubMed  Google Scholar 

  • Demeure O, Renard C, Yerle M, Faraut T, Riquet J, Robic A, Schiex T, Rink A, Milan D (2003) Rearranged gene order between pig and human in a QTL region on SSC 7. Mamm Genome 14:71–80

    Article  PubMed  CAS  Google Scholar 

  • Desautes C, Bidanel J P, Milan D, Iannuccelli N, Amigues Y, Bourgeois F, Caritez J, Renard C, Chevalet C, Mormede P (2002) Genetic linkage mapping of quantitative trait loci for behavioral and neuroendocrine stress response traits in pigs. J Anim Sci 80:2276–2285

    PubMed  CAS  Google Scholar 

  • Echard G (1984) The Gene Map of the Pig (Sus scrofa domestica L.). In: O'Brien SJO (ed) Genetic Maps, Book 3: A Compilation of Linkage and Restriction Maps. Cold Spring Harbor Laboratory Press, New York, USA pp 392–395

    Google Scholar 

  • Ellegren H, Chowdhary BP, Johansson M, Marklund L, Fred-holm M, Gustavsson I, Andersson L (1994) A primary linkage map of the porcine genome reveals a low rate of genetic recombination. Genetics 137:1089–1100

    PubMed  CAS  Google Scholar 

  • Epstein J, Bichard M (1984) Pig. In: Mason IL (ed) Evolution of Domesticated Animals. Longman, London, pp 145–162

    Google Scholar 

  • Ernst CW, Steibel JP, Ramos AM, Tempelman RJ, Cardoso FF, Rosa GJM, Edwards DB, Bates RO (2007) Proc 32nd Ann Meet Genetics Sym, National Swine Improvement Federation. Kansas City, KS, USA, Dec 6–7 (in print).

    Google Scholar 

  • Fahrenkrug SC, Smith TP, Freking BA, Cho J, White J, Vallet J, Wise T, Rohrer G, Pertea G, Sultana R, Quackenbush J, Keele J (2002) Porcine gene discovery by normalized cDNA-library sequencing and EST cluster assembly. Mamm Genome 13:475–478

    Article  PubMed  Google Scholar 

  • Fang M, Andersson L (2006) Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proc Royal Soc B 273:1803–1810

    Article  Google Scholar 

  • Fang M, Berg F, Ducos A, Andersson L (2006) Mitochondrial haplotypes of European wild boars with 2n O= 36 are closely related to those of European domestic pigs with 2n O= 38. Anim Genet 37:459–464

    Article  PubMed  CAS  Google Scholar 

  • Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O'Brien PJ, MacLennan DH (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253:448–451

    Article  PubMed  CAS  Google Scholar 

  • Giuffra E, TOörnsten A, Marklund S, Bongcam-Rudloff E, Char-don P, Kijas JM, Anderson SI, Archibald AL, Andersson L (2002) A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT. Mamm Genome 13:569–577

    Article  PubMed  CAS  Google Scholar 

  • Gladney CD, Bertani GR, Johnson RK, Pomp D (2004) Evaluation of gene expression in pigs selected for enhanced reproduction using differential display PCR and microar-ray. I. Ovarian follicles. J Anim Sci 82:17–31

    PubMed  CAS  Google Scholar 

  • Gorodkin J, Cirera S, Hedegaard J, Gilchrist MJ, Panitz F, Jor-gensen C, Scheibye-Knudsen K, Arvin T, Lumholdt S, Saw-era M, Green T, Nielsen BJ, Havgaard JH, Rosenkilde C, Wang J, Li H, Li R, Liu B, Hu S, Dong W, Li W, Yu J, Wang J, Staerfeldt HH, Wernersson R, Madsen LB, Thomsen B, Hornshoj H, Bujie Z, Wang X, Wang X, Bolund L, Brunak S, Yang H, Bendixen C, Fredholm M (2007) Porcine tran-scriptome analysis based on 97 non-normalized cDNA libraries and assembly of 1,021,891 expressed sequence tags. Genome Biol 8:R45

    Article  PubMed  CAS  Google Scholar 

  • Goureau A, Yerle M, Schmitz A, Riquet J, Milan D, Pinton P, Fre-lat G, Gellin J (1996) Human and porcine correspondence of chromosome segments using bidirectional chromosome painting. Genomics 36:252–262

    Article  PubMed  CAS  Google Scholar 

  • Groves C P, Grubb P (1993) The Eurasian Suids: Sus and Baby-rousa. In: Oliver WLR (ed) Pigs, Peccaries and Hippos. IUCN, The World Conservation Union, Gland, Switzerland pp 107–111

    Google Scholar 

  • Gustavsson I (1988) Standard karyotype of the domestic pig. Committee for the Standardized Karyotype of the Domestic Pig. Hereditas 109:151–157

    Article  PubMed  CAS  Google Scholar 

  • Haley C, de Koning DJ (2006) Genetical genomics in livestock: potentials and pitfalls. Anim Genet 37(Suppl. 1):10–12

    Article  PubMed  CAS  Google Scholar 

  • Hanset R, Dasnoi C, Scalais S, Michaux C, Grobet L (1995) Effets de l'introgression dons le genome Pietrain de l'allele normal aux locus de sensibilitlé a l'halothane. Genet Sel Evol 27:77–88

    Article  Google Scholar 

  • Hart EA, Caccamo M, Harrow JL, Humphray SJ, Gilbert JG, Trevanion S, Hubbard T, Rogers J, Rothschild MF (2007) Lessons learned from the initial sequencing of the pig genome: comparative analysis of an 8 Mb region of pig chromosome 17. Genome Biol 8:R168

    Article  PubMed  CAS  Google Scholar 

  • Hasler-Rapacz J, Ellegren H, Fridolfsson AK, Kirkpatrick B, Kirk S, Andersson L, Rapacz J (1998) Identification of a mutation in the low density lipoprotein receptor gene associated with recessive familial hypercholesterolemia in swine. Amer J Med Genet 76:379–386

    Article  CAS  Google Scholar 

  • Hawken RJ, Murtaugh J, Flickinger GH, Yerle M, Robic A, Milan D, Gellin J, Beattie CW, Schook LB, Alexander LJ (1999) A first-generation porcine whole-genome radiation hybrid map. Mamm Genome 10:824–830

    Article  PubMed  CAS  Google Scholar 

  • Holl JW, Cassady JP, Pomp D, Johnson RK (2004) A genome scan for quantitative trait loci and imprinted regions affecting reproduction in pigs. J Anim Sci 82:3421–3429

    PubMed  CAS  Google Scholar 

  • Hu ZL, Dracheva S, Jang W, Maglott D, Bastiaansen J, Rothschild MF, Reecy JM (2005) A QTL resource and comparison tool for pigs: PigQTLDB. Mamm Genome 16:792–800

    Article  PubMed  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Marin A, Perez-Reinado E, Bendixen C, Conley L, Hedegard J, Martinez A, Garrido J (2006) Microarray analysis of lipopolysaccharide-treated porcine alveolar macrophages. Proc 30th Intl Conf Anim Genet, Porto Seg-uro, Brazil, August 20–25, C447

    Google Scholar 

  • Johansson Moller M, Chaudhary R, Hellmlén E, HOöyheim B, Chowdhary B, Andersson L (1996) Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm Genome 7:822–830

    Article  PubMed  CAS  Google Scholar 

  • Jones GF (1998) Genetic aspects of domestication, common breeds and their origin. In: Rothschild M, Ruvinsky A (eds) The Genetics of Pig. CABI, Oxon, UK pp 17–50

    Google Scholar 

  • Kanis E, DeGreef KH, Hiemstra A, van Arendonk JAM (2005) Breeding for societally important traits in pigs. J Anim Sci 83:948–957

    PubMed  CAS  Google Scholar 

  • Kijas JMH, Andersson L (2001) A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome. J Mol Evol 52:302–308

    PubMed  CAS  Google Scholar 

  • Kijas JM, Wales R, TOörnsten A, Chardon P, Moller M, Andersson L (1998) Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics 150:1177–1185

    PubMed  CAS  Google Scholar 

  • Kijas JM, Moller M, Plastow G, Andersson L (2001) A frameshift mutation in MC1R and a high frequency of somatic reversions cause black spotting in pigs. Genetics 158:779–785

    PubMed  CAS  Google Scholar 

  • Kim KS, Larsen N, Short T, Plastow G, Rothschild MF (2000) A missense variant of the melanocortin 4 receptor (MC4R) gene is associated with fatness, growth and feed intake traits. Mamm Genome 11:131–135

    Article  PubMed  CAS  Google Scholar 

  • Kim TH, Kim NS, Lim D, Lee KT, Oh JH, Park HS, Jang GW, Kim HY, Jeon M, Choi BH, Lee HY, Chung HY, Kim H (2006) Generation and analysis of large-scale expressed sequence tags (ESTs) from a full-length enriched cDNA library of porcine backfat tissue. BMC Genomics 7:36

    Article  PubMed  CAS  Google Scholar 

  • de Koning DJ, Rattink A P, Harlizius B, van Arendonk JA, Bras-camp EW, Groenen MA (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Nat Acad Sci USA 597:7947–7950

    Article  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  • Legault C (1998) Genetics of colour variation. In: Rothschild M, Ruvinsky A (eds) The Genetics of Pig. CABI, Oxon, UK, pp 51–69

    Google Scholar 

  • Liu WS, Eyer K, Yasue H, Roelofs B, Hiraiwa H, Shimogiri T, Landrito E, Ekstrand J, Treat M, Rink A, Yerle M, Milan D, Beattie CW (2005) A 12,000-rad porcine radiation hybrid (IMNpRH2) panel refines the conserved synteny between SSC12 and HSA17. Genomics 86:731–738

    Article  PubMed  CAS  Google Scholar 

  • Marklund L, Johansson-Moller M, Hoyheim B, Davies W, Fred-holm M, Juneja RK, Mariani P, Coppieters W, Ellegren H, Andersson L (1996) A comprehensive linkage map of the pig based on a wild pig – Large White intercross. Anim Genet 27:255–269

    Article  PubMed  CAS  Google Scholar 

  • Marklund S, Kijas J, Rodriguez-Martinez H, ROönnstrand L, Funa K, Moller M, Lange D, Edfors-Lilja I, Andersson L (1998) Molecular basis for the dominant white phenotype in the domestic pig. Genome Res 8:826–833

    PubMed  CAS  Google Scholar 

  • Martins-Wess F, Milan D, Drogemuller C, Vobeta-Nemitz R, Brenig B, Robic A, Yerle M, Leeb T (2003) A high resolution physical and RH map of pig chromosome 6q1.2 and comparative analysis with human chromosome 19q13.1. BMC Genomics 4:20

    Article  PubMed  Google Scholar 

  • Meijerink E, Neuenschwander S, Fries R, Dinter A, Bertschinger HU, Stranzinger G, VOögeli P (2000) A DNA polymorphism influencing alpha(1,2)fucosyltransferase activity of the pig FUT1 enzyme determines susceptibility of small intestinal epithelium to Escherichia coli F18 adhesion. Immunoge-netics 52:129–136

    Article  CAS  Google Scholar 

  • Mercade A, Estelle J, Noguera JL, Folch JM, Varona L, Silio L, Sanchez A, Perez-Enciso M (2005) On growth, fatness, and form: a further look at porcine chromosome 4 in an Iberian x Landrace cross. Mamm Genome 16:374–382

    Article  PubMed  Google Scholar 

  • Meyers SN, Rogatcheva MB, Larkin DM, Yerle M, Milan D, Hawken RJ, Schook LB, Beever JE (2005) Piggy-BACing the human genome II. A high-resolution, physically anchored, comparative map of the porcine autosomes. Genomics 86:739–752

    Article  PubMed  Google Scholar 

  • Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, LundstrOöm K, Reinsch N, Gellin J, Kalm E, Le Roy P, Char-don P, Andersson L (2000a) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288:1248–1251

    Article  CAS  Google Scholar 

  • Milan D, Hawken R, Cabau C, Leroux S, Genet C, Lahbib Y, Tosser G, Robic A, Hatey F, Alexander L, Beattie C, Schook L, Yerle M, Gellin J (2000b) IMpRH server: an RH mapping server available on the Web. Bioinformatics 6:558–559

    Article  Google Scholar 

  • Moody DE, Zou Z, McIntyre L (2002) Cross-species hybridisation of pig RNA to human nylon microarrays. BMC Genomics 3:27

    Article  PubMed  CAS  Google Scholar 

  • Morimoto M, Zarlenga D, Beard H, Alkharouf N, Matthews BF, Urban JF Jr (2003) Ascaris suum: cDNA microarray analysis of 4th stage larvae (L4) during self-cure from the intestine. Exper Parasitol 104:113–121

    Article  CAS  Google Scholar 

  • Ollivier L (1998) Genetic improvement of the pig. In: Rothschild M, Ruvinsky A (eds) The Genetics of Pig. CABI, Oxon, UK, pp 511–540

    Google Scholar 

  • Perez-Enciso M, Misztal I (2004) Qxpak: a versatile mixed model application for genetical genomics and QTL analyses. Bioinformatics 20:2792–2798

    Article  PubMed  CAS  Google Scholar 

  • Reiner G, Melchinger E, Kramarova M, Pfaff E, Buttner M, Saal-muller A, Geldermann H (2002) Detection of quantitative trait loci for resistance/susceptibility to pseudorabies virus in swine. J General Virol 83:167–172

    CAS  Google Scholar 

  • Renard C, Hart E, Sehra H, Beasley H, Coggill P, Howe K, Harrow J, Gilbert J, Sims S, Rogers J, Ando A, Shigenari A, Shiina T, Inoko H, Chardon P, Beck S (2006) The genomic sequence and analysis of the swine major histocompatibil-ity complex. Genomics 88:96–110

    Article  PubMed  CAS  Google Scholar 

  • Rink A, Eyer K, Roelofs B, Priest KJ, Sharkey-Brockmeier KJ, Lekhong S, Karajusuf EK, Bang J, Yerle M, Milan D, Liu WS, Beattie CW (2006) Radiation hybrid map of the porcine genome comprising 2035 EST loci. Mamm Genome 17:878–885

    Article  PubMed  CAS  Google Scholar 

  • Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW (1994) A microsatellite linkage map of the porcine genome. Genetics 136:231–245

    PubMed  CAS  Google Scholar 

  • Rohrer GA, Alexander LJ, Hu Z, Smith T P, Keele JW, Beattie CW (1996) A comprehensive map of the porcine genome. Genome Res 6:371–391

    Article  PubMed  CAS  Google Scholar 

  • Rothschild MF (2004) Porcine genomics delivers new tools and results: this little piggy did more than just go to market. Genet Res Camb 83:1–6

    CAS  Google Scholar 

  • Rothschild MF, Hu Z, Jiang Z (2007) Advances in QTL mapping in pigs. Int J Biol Sci 3:192–197

    PubMed  CAS  Google Scholar 

  • Ruvinsky A, Rothschild MF (1998) Systematics and evolution of the pig. In: Rothschild M, Ruvinsky A (eds) The Genetics of Pig. CABI, Oxon, UK pp 1–16

    Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003a) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  CAS  Google Scholar 

  • Schadt EE, Monks SA, Friend SH (2003b) A new paradigm for drug discovery: integrating clinical, genetic, genomic and molecular phenotype data to identify drug targets. Bio-chem Soc Trans 31:437–443

    Article  CAS  Google Scholar 

  • Schook LB, Beever JE, Rogers J, Humphrey S, Archibald A, Chardon P, Milan D, Rohrer G, Eversole K (2005) Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Comp Funct Genomics 6:251–255

    Article  PubMed  CAS  Google Scholar 

  • Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339–340

    Article  PubMed  CAS  Google Scholar 

  • Shah G, Azizian M, Bruch D, Mehta R, Kittur D (2004) Cross-species comparison of gene expression between human and porcine tissue, using single microarray platform—preliminary results. Clin Transpl 18 (Suppl 12):76–80

    Article  Google Scholar 

  • Tikhonov VN, Troshina AI (1974) Identification of chromosomes and their aberrations in karyotypes of subspecies of Sus scrofa L. by differential staining. Doklady Akademii Nauk SSSR 214:932–935

    Google Scholar 

  • Tsai S, Cassady J P, Freking BA, Nonneman DJ, Rohrer GA, Pie-drahita JA (2006) Annotation of the Affymetrix porcine genome microarray. Anim Genet 37:423–424

    Article  PubMed  CAS  Google Scholar 

  • Tuggle CK, Green JA, Fitzsimmons C, Woods R, Prather RS, Malchenko S, Soares BM, Kucaba T, Crouch K, Smith C, Tack D, Robinson N, O'Leary B, Scheetz T, Casavant T, Pomp D, Edeal BJ, Zhang Y, Rothschild MF, Garwood K, Beavis W (2003) EST-based gene discovery in pig: virtual expression patterns and comparative mapping to human. Mamm Genome 14:565–579

    Article  PubMed  Google Scholar 

  • Tuggle CK, Wang Y, Couture O (2007) Advances in swine tran-scriptomics. Int J Biol Sci 3:132–152

    PubMed  CAS  Google Scholar 

  • Uenishi H, Eguchi-Ogawa T, Shinkai H, Okumura N, Suzuki K, Toki D, Hamasima N, Awata T (2007) PEDE (Pig EST Data Explorer) has been expanded into Pig Expression Data Explorer, including 10 147 porcine full-length cDNA sequences. Nucl Acids Res 35(Database issue):D650–653

    Article  PubMed  Google Scholar 

  • Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836

    Article  PubMed  CAS  Google Scholar 

  • United States Department of Agriculture, Foreign Agriculture Service (2006) Livestock and Poultry: World Markets and Trade. (http://www.fas.usda.gov/)

    Google Scholar 

  • United States Department of Agriculture, Agriculture Research Service (2007) USDA Nutrient Data Set for Fresh Pork, Release 1.1 (http://www.ars.usda.gov/nutrientdata)

    Google Scholar 

  • Wattrang E, Almqvist M, Johansson A, Fossum C, Wallgren P, Pielberg G, Andersson L, Edfors-Lilja I (2005) Confirmation of QTL on porcine chromosomes 1 and 8 influencing leukocyte numbers, haematological parameters and leukocyte function. Anim Genet 36:337–345

    Article  PubMed  CAS  Google Scholar 

  • Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Pan-itz F, Staerfeldt HH, Christensen OF, Mailund T, Hornshoj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong GK, Yu J, Wang J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L (2005) Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6:70

    Article  PubMed  CAS  Google Scholar 

  • Williams JL (2005) The use of marker-assisted selection in animal breeding and biotechnology. Revue Scientifique et Technique 24:379–391

    PubMed  CAS  Google Scholar 

  • Wright D, Butlin RK, Carlborg O (2006) Epistatic regulation of behavioural and morphological traits in the zebrafish (Danio rerio). Behav Genet 36:914–922

    Article  PubMed  Google Scholar 

  • Ya o J, Coussens PM, Saama P, Suchyta S, Ernst CW (2002) Generation of expressed sequence tags from a normalized porcine skeletal muscle cDNA library. Anim Biotech 13:211–222

    Article  CAS  Google Scholar 

  • Yerle M, Lahbib-Mansais Y, Mellink C, Goureau A, Pinton P, Echard G, Gellin J, Zijlstra C, De Haan N, Bosma AA, et al (1995) The PiGMaP consortium cytogenetic map of the domestic pig (Sus scrofa domestica). Mamm Genome 6:176–186

    Article  PubMed  CAS  Google Scholar 

  • Yerle M, Echard G, Robic A, Mairal A, Dubut-Fontana C, Riquet J, Pinton P, Milan D, Lahbib-Mansais Y, Gellin J (1996) A somatic cell hybrid panel for pig regional gene mapping characterized by molecular cytogenetics. Cytogenet Cell Genet 73:194–202

    Article  PubMed  CAS  Google Scholar 

  • Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie LB, Milan D, Gellin J (1998) Construction of a whole genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82:182–188

    Article  PubMed  CAS  Google Scholar 

  • Yerle M, Pinton P, Delcros C, Arnal N, Milan D, Robic A (2002) Generation and characterization of a 12,000-rad radiation hybrid panel for fine mapping in pig. Cytogenet Genome Res 97:219–228

    Article  PubMed  CAS  Google Scholar 

  • Zhao SH, Nettleton D, Liu W, Fitzsimmons C, Ernst CW, Raney NE, Tuggle CK (2003) Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J Anim Sci 81:2179–2188

    PubMed  CAS  Google Scholar 

  • Zhao SH, Recknor J, Lunney JK, Nettleton D, Kuhar D, Orley S, Tuggle CK (2005) Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics 86:618–625

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine W. Ernst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ernst, C.W., Ramos, A.M. (2009). Pig. In: Cockett, N.E., Kole, C. (eds) Genome Mapping and Genomics in Domestic Animals. Genome Mapping and Genomics in Animals, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73835-0_9

Download citation

Publish with us

Policies and ethics