Skip to main content

Efficient Recognition of Acyclic Clustered Constraint Satisfaction Problems

  • Conference paper
Recent Advances in Constraints (CSCLP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4651))

  • 214 Accesses

Abstract

In this paper we present a novel approach to solving Constraint Satisfaction Problems whose constraint graphs are highly clustered and the graph of clusters is close to being acyclic. Such graphs are encountered in many real world application domains such as configuration, diagnosis, model-based reasoning and scheduling. We present a class of variable ordering heuristics that exploit the clustered structure of the constraint network to inform search. We show how these heuristics can be used in conjunction with nogood learning to develop efficient solvers that can exploit propagation based on either forward checking or maintaining arc-consistency algorithms. Experimental results show that maintaining arc-consistency alone is not competitive with our approach, even if nogood learning and a well known variable ordering are incorporated. It is only by using our cluster-based heuristics can large problems be solved efficiently. The poor performance of maintaining arc-consistency is somewhat surprising, but quite easy to explain.

This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded, decomposability–a survey. BIT 25(1), 2–23 (1985)

    Article  MATH  Google Scholar 

  2. Bacchus, F.: Extending forward checking. Principles and Practice of Constraint Programming, 35–51 (2000)

    Google Scholar 

  3. Bayardo, R.J., Miranker, D.P.: An optimal backtrack algorithm for tree-structured constraint satisfaction problems. Artif. Intell. 71(1), 159–181 (1994)

    Article  MATH  Google Scholar 

  4. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–21 (1993)

    MATH  Google Scholar 

  5. Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artif. Intell. 34(1), 1–38 (1987)

    Article  MATH  Google Scholar 

  6. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38(3), 353–366 (1989)

    Article  MATH  Google Scholar 

  7. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: AAAI, pp. 4–9 (1990)

    Google Scholar 

  8. Ginsberg, M.L.: Dynamic backtracking. J. Artif. Intell. Res (JAIR) 1, 25–46 (1993)

    MATH  Google Scholar 

  9. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14(3), 263–313 (1980)

    Article  Google Scholar 

  10. Harrelson, C., Hildrum, K., Rao, S.: A polynomial-time tree decomposition to minimize congestion. In: Proceedings of the ACM symposium on Parallel algorithms and architectures, pp. 34–43. ACM Press, New York (2003)

    Google Scholar 

  11. Jegou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint networks. Artif. Intell. 146(1), 43–75 (2003)

    Article  MATH  Google Scholar 

  12. Jussien, N., Debruyne, R., Boizumault, P.: Maintaining arc-consistency within dynamic backtracking. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 249–261. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving frequency assignment problems via tree-decomposition. Research Memoranda 036, METEOR (1999)

    Google Scholar 

  14. Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Computational Intelligence 9, 268–299 (1993)

    Article  Google Scholar 

  15. Prosser, P.: Binary constraint satisfaction problems: Some are harder than others. In: ECAI, pp. 95–99 (1994)

    Google Scholar 

  16. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In: ECAI, pp. 125–129 (1994)

    Google Scholar 

  17. Sadeh, N.M., Sycara, K.P., Xiong, Y.: Backtracking techniques for the job shop scheduling constraint satisfaction problem. Artif. Intell. 76(1-2), 455–480 (1995)

    Article  Google Scholar 

  18. Weigel, R., Faltings, B.: Compiling constraint satisfaction problems. Artificial Intelligence 115, 257–289 (1999)

    Article  MATH  Google Scholar 

  19. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: IJCAI, pp. 1173–1178 (2003)

    Google Scholar 

  20. Xu, J., Jiao, F., Berger, B.: A tree-decomposition approach to protein structure prediction. In: CSB 2005. 2005 IEEE Computational Systems Bioinformatics Conference, pp. 247–256. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Azevedo Pedro Barahona François Fages Francesca Rossi

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Razgon, I., O’Sullivan, B. (2007). Efficient Recognition of Acyclic Clustered Constraint Satisfaction Problems. In: Azevedo, F., Barahona, P., Fages, F., Rossi, F. (eds) Recent Advances in Constraints. CSCLP 2006. Lecture Notes in Computer Science(), vol 4651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73817-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73817-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73816-9

  • Online ISBN: 978-3-540-73817-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics