Skip to main content

Abstract

Although the precise mechanisms are not fully understood, it is clear that there is an adaptive remodelling response of surrounding bone to stresses. Implant features causing excessive high or low stresses can possibly contribute to pathologic bone resorption or bone atrophy. This chapter reviews the current applications of FEA in Implant Dentistry. Findings from FEA studies will then be discussed in relation to the bone-implant interface; the implant-prosthesis connection; and multiple implant prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pilliar RM, Deporter DA, Watson PA, Valiquette N (1991) Dental implant design-effect on bone remodelling. J Biomed Mater Res 25:467–483

    Article  Google Scholar 

  2. Vaillancount H, Pillar RM, McCammond D (1996) Factors affecting crestal bone loss with dental implants partially covered with a porous coating: a finite element analysis. Int J Oral Maxillofac Implants 11:351–359

    Google Scholar 

  3. Hassler CR, Rybicki EF, Cummings KD, Clark LC (1977) Quantitaton of compressive stresses and its effects on bone remodelling. Bull Hosp Bone Joint Res 38:90–93

    Google Scholar 

  4. Skalak R (1983) Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 40:6

    Google Scholar 

  5. Ma XX, Li T (1998) Single implant prosthesis. In: Geng Jianping (Ed). Newly-developed Technology of Prosthetic Dentistry in China in 1990s. Chengdu: Sichuang Science and Technology Publishing House 1–20

    Google Scholar 

  6. Siegele D, Soltesz U (1986) Implantaten mit intramobilen Emsatzen als Bruckenpfeiler-ein Vergleich der im Knochen erzengten Spanungs Verhaltnisse. Z Zahnartzl Implantol 11:117–124

    Google Scholar 

  7. Richter EJ (1986) Belastung von Implantaten-Theoretische Grundlagen. Z Zahnartzl Implantol 11:181–198

    Google Scholar 

  8. Clift SE, Fisher J, Watson CJ (1992) Finite element stress and strain analysis of the bone surrounding a dental implant: effect of variations in bone modulus. Proc Instn Mech Engrs 206:139–147

    Article  Google Scholar 

  9. Geng JP, Liu HC (1999) Exceptional Prosthodontics. Hong Kong, China: Hong Kong Tranfor Publishing Co., Limited 60–76

    Google Scholar 

  10. A Natali N, Meroi EA (1996) Biomechanical analysis of dental implant in the interaction phenomena with cortical and trabecular bone tissue. Proc 10th Conference of ESB, Leuven 34

    Google Scholar 

  11. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F (1998) Evaluating parameters of osseointegrated dental implants using finite element analysis-a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 24:80–88

    Article  Google Scholar 

  12. Barbier L, Vander Sloten J, Krzesinski G, Schepers E, van der Perre G (1998) Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil 25:847–858

    Article  Google Scholar 

  13. Zhang JK, Chen ZQ (1998) The study of effects of changes of the elastic modulus of the materials substitute to human hard tissues on the mechanical state in the implant-bone interface by three-dimensional anisotropic finite element analysis. West China Journal of Stomatology 16:274–278

    Google Scholar 

  14. Benzing UR, Gall H, Weber H (1995) Biomechanical aspects of two different implant-prosthetic concepts for edentulous maxillae. Int J Oral Maxillofac Implants 10:188–198

    Google Scholar 

  15. Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O (1998) Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 13:781–790

    Google Scholar 

  16. Hobkirk JA, Psarros KJ (1992) The influnce of occlusal surface material on peak masticatory forces using ossointegrated implant-sup ported prostheses. Int J Oral Maxillofac Implants 7:354–362

    Google Scholar 

  17. Cibirka RM (1992) Determining the force absorption on quotient for restorative materials in implant occlusal surfaces. J Prosthet Dent 67:361–364

    Article  Google Scholar 

  18. Mailath G, Stoiber B, Watzek G, Matejka M (1989) Bone resorption at the entry of osseointegrated implants-a biomechanical phenomenon. Finite element study. Z Stomatol 86:207–216

    Google Scholar 

  19. Rieger MR, Fareed K, Adams WK, Tanquist RA (1989) Bone stress distribution for three endosseous implants. J Prosthet Dent 61: 223–238

    Article  Google Scholar 

  20. Stoiber B (1988) Biomechanical principles of endosseous screw implants. Wien Klin Wochenschr 100:522–524

    Google Scholar 

  21. Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T (1990) Two-dimensional FEA analysis of hydroxy apatite implants: diameter effects on stress distribution. J Oral Implantol 16:6–11

    Google Scholar 

  22. Lum LB (1991) A biomechanical rationale for the use of short implants. J Oral Implantol 17:126–131

    Google Scholar 

  23. Stellingsma C, Meijer HJ, Raghoebar GM (2000) Use of short endosseous implants and an overdenture in the extremely resorbed mandible: a five-year retrospective study. J Oral Maxillofac Surg 58:382–388

    Article  Google Scholar 

  24. Siegele D, Soltesz U (1989) Numerical investigations of the influence of implant shape on stress distribution in the jaw bone. Int J Oral Maxillofac Implants 4:333–340

    Google Scholar 

  25. Clift SE, Fisher J, Edwards BN (1995) Comparative analysis of bone stresses and strains in the Intoss dental implant with and without a flexible internal post. Proc Inst Mech Eng[H] 209:139–147

    Article  Google Scholar 

  26. Oonishi H (1990) Mechanical and chemical bonding of artificial joints. Clin Mater 5:217–233

    Article  Google Scholar 

  27. Meijer GJ, Starmans FJ, de Putter C, van Blitterswijk CA (1995) The influence of a flexible coating on the bone stress around dental implants. J Oral Rehabil 22:105–111

    Article  Google Scholar 

  28. Vaillancourt H, Pilliar RM, McCammond D (1995) Finite element analysis of crestal bone loss around porous-coated dental implants. J Appl Biomater 6:267–282

    Article  Google Scholar 

  29. Vaillancourt H, Pilliar RM, McCammond D (1996) Factors affecting crestal bone loss with dental implants partially covered with a porous coating: a finite element analysis. Int J Oral Maxillofac Implants 11:351–359

    Google Scholar 

  30. Wiskott HW, Belser UC (1999) Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 10:429–444

    Article  Google Scholar 

  31. Hansson S (1999) The implant neck: smooth or provided with retention elements. A biomechanical approach. Clin Oral Impl Res 10:394–405

    Article  Google Scholar 

  32. Clelland NL, Ismail YH, Zaki HS, Pipko D (1991) Three-dimensional finite element stress analysis in and around the Screw-vent implant. Int J Oral Maxillofac Implants 6:391–398

    Google Scholar 

  33. Lum LB, Osier JF (1992) Load transfer from endosteal implants to supporting bone: an analysis using statics. Part one: Horizontal loading. J Oral Implantology 18:343–348

    Google Scholar 

  34. Clift SE, Fisher J, Watson CJ (1992) Finite element stress and strain analysis of the bone surrounding a dental implant: effect of variations in bone modulus. Proc Inst Mech Eng [H] 206:233–241

    Google Scholar 

  35. Holmes DC, Loftus JT (1997) Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol, 23:104–111

    Google Scholar 

  36. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA (1996) Three-dimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function. J Prosthet Dent 76:633–640

    Article  Google Scholar 

  37. Wadamoto M, Akagawa Y, Sato Y, Kubo T (1996) The three-dimensional bone interface of an osseointegrated implant. I: A morphometric evaluation in initial healing. J Prosthet Dent 76:170–175

    Article  Google Scholar 

  38. Clelland NL, Lee JK, Bimbenet OC, Gilat A (1993) Use of an axisymmetric finite element method to compare maxillary bone variables for a loaded implant. J Prosthodont 2:183–189

    Article  Google Scholar 

  39. Sakaguchi RL, Borgersen SE (1993) Nonlinear finite element contact analysis of dental implant components. Int J Oral Maxillofac Implants 8: 655–661

    Google Scholar 

  40. Jorneus L, Jemt T, Carlsson L (1992) Loads and desighs of screw joints for single crown supported by osseointegrated implants. Int J Oral Maxillofac Implants 7:353–359

    Google Scholar 

  41. Haack JE, Sakaguchi RL, Sun T, Coffey JP (1994) Determination of preload stress in dental implant screws (abstract 808). J Dent Res 73(special issue):202

    Google Scholar 

  42. Versluis A, Korioth TW, Cardoso AC (1999) Numerical analysis of a dental implant system preloaded with a washer. Int J Oral Maxillofac Implants 14:337–341

    Google Scholar 

  43. Tan KBC (1995) The Clinical Significance of Distortion in Implant Prosthodontics, “Is there such a thing as Passive Fit?” Ann Acad Med Singapore 24:138–157

    Google Scholar 

  44. Cheong WM, Tan KBC, Teoh SH, Tan JS (2000) FEA of the Nobel Biocare Standard Abutment during Preload and Applied Axial Loads. J Dent Res 77(5):1329

    Google Scholar 

  45. Holmes DC, Haganman CR, Aquilino SA (1994) Deflection of superstructure and stress concentrations in the IMZ implant system. Int J Prosthodont 7:239–246

    Google Scholar 

  46. Holmes DC, Grigsby WR, Goel VK, Keller JC (1992) Comparison of stress transmission in the IMZ implant system with polyoxymethylene or titanium intramobile element: a finite element stress analysis. Int J Oral Maxillofac Implants 7: 450–458

    Google Scholar 

  47. Papavasiliou G, Tripodakis AP, Kamposiora P, Strub JR, Bayne SC (1996) Finite element analysis of ceramic abutment-restoration combinations for osseointegrated implants. Int J Prosthodont 9: 254–260

    Google Scholar 

  48. Holmes DC, Haganman CR, Aquilino SA, Diaz-Arnold AM, Stanford CM (1997) Finite element stress analysis of IMZ abutment designs: development of a model. J Prosthodont 6:31–36

    Article  Google Scholar 

  49. Hagmman CR, Holmes DC, Aquilino SA, Diaz-Arnold AM, Stanford CM (1997) Deflection and stress distribution in three different IMZ abutment designs. J Prosthodont 6:110–121

    Article  Google Scholar 

  50. Canay S, Hersek N, Akpinar I, Asik Z (1996) Comparison of stress distribution around vertical and angled implants with finite-element analysis. Quintessence Int 27: 591–598

    Google Scholar 

  51. Kregzde M (1994) A method of selecting the best implant prosthesis design option using three-dimensional finite element analysis. Int J Oral Maxillofac Implants 8:662–673

    Google Scholar 

  52. Korioth TW, Johann AR (1999) Influence of mandibular superstructure shape on implant stresses during simulated posterior biting. J Prosthet Dent 82:67–72

    Article  Google Scholar 

  53. Young FA, Williams KR, Draughn R, Strohaver (1998) Design of prosthetic cantilever bridgework supported by osseointegrated implants using the finite element method. Dent Mater 14:37–43

    Article  Google Scholar 

  54. Sertg ZA, Gvener S (1996) Finite element analysis of the effect of cantilever and implant length on stress distribution in an implant-sup ported fixed prosthesis. J Prosthet Dent 76:165–169

    Article  Google Scholar 

  55. Lindquist LW, Carlsson GE, Jemt T (1996) A prospective 15-year follow-up study of mandibular fixed prostheses supported by ossointegrated implants: Clinical results and marginal bone loss. Clin Oral Impl Res 7:329–336

    Article  Google Scholar 

  56. Meijer HJ, Starmans FJ, Steen WH, Bosman F (1993) A three-dimensional, finite-element analysis of bone around dental implants in an edentulous human mandible. Arch Oral Biol 38:491–496

    Article  Google Scholar 

  57. Meijer HJ, Starmans FJ, Steen WH, Bosman F (1994) Location of implants in the interforaminal region of the mandible and the consequences for the design of the superstructure. J Oral Rehabil 21:47–56

    Article  Google Scholar 

  58. Meijer HJ, Starmans FJ, Steen WH, Bosman F (1996) Loading conditions of endosseous implants in an edentulous human mandible: a three-dimensional, finite-element study. J Oral Rehabil 23:757–763

    Article  Google Scholar 

  59. Bidez MW, Chen Y, McLoughlin SW, English CE (1992) Finite element analysis (FEA) studies in 2.5-mm round bar design: the effects of bar length and material composition on bar failure. J Oral Implantol 18:122–128

    Google Scholar 

  60. Bidez MW, McLoughlin SW, Chen Y, English CE (1993) Finite element analysis of two-abutment Hader bar designs. Implant Dent 2:107–114

    Article  Google Scholar 

  61. Bidez MW, Chen Y, McLoughlin SW, English CE (1993) Finite element analysis of four-abutment Hader bar designs. Implant Dent 2:171–176

    Google Scholar 

  62. Menicucci G, Lorenzetti M, Pera P, Preti G (1998) Mandibular implant-retained overdenture: finite element analysis of two anchorage systems. Int J Oral Maxillofac Implants 13:369–376

    Google Scholar 

  63. Van Rossen IP, Braak LH, de Putter C, de Groot K (1990) Stress-absorbing elements in dental implants. J Prosthet Dent 64:198–205

    Article  Google Scholar 

  64. El Charkawi HG, el Wakad MT, Naser ME (1990) Modification of osseointegrated implants for distal extension prostheses. J Prosthet Dent 64:469–472

    Article  Google Scholar 

  65. Misch CM, Ismail YH (1993) Finite element stress analysis of tooth-to-implant fixed partial denture designs. J Prosthodont 2:83–92

    Article  Google Scholar 

  66. Melo C, Matsushita Y, Koyano K, Hirowatari H, Suetsugn T (1995) Comparative stress analyses of fixed free-end osseointegrated prostheses using the finite element method. J Oral Implantol 21:290–294

    Google Scholar 

  67. Gross M, Laufer BZ (1997) Splinting osseointegrated implants and natural teeth in rehabilitation of partially edentulous patients. Part I: laboratory and clinical studies. J Oral Rehabil 24:863–870

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Zhejiang University Press, Hangzhou and Springer-Verlag GbmH Berlin Heidelberg

About this chapter

Cite this chapter

Geng, J. et al. (2008). Applications to Implant Dentistry. In: Geng, J., Yan, W., Xu, W. (eds) Application of the Finite Element Method in Implant Dentistry. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73764-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73764-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73763-6

  • Online ISBN: 978-3-540-73764-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics