Skip to main content

Werner Syndrome, Telomeres, and Stress Signaling: Implications for Future Therapies?

  • Chapter
Telomeres and Telomerase in Ageing, Disease, and Cancer
  • 1316 Accesses

Werner syndrome (WS) is a premature ageing disorder used as a model of normal human ageing. WS individuals have several characteristics of normal ageing, such as cataracts, hair greying, and skin ageing, but manifest these at an early age. Additionally, WS individuals have high levels of infl ammatory diseases such as atherosclerosis and type II diabetes. The in vivo ageing in WS is associated with premature ageing of fi broblasts in culture, and it is thought that WS is a disease of accelerated cell ageing. Normal fi broblasts senesce as a result of telomere erosion and WRNp is known to play a role in telomere maintenance. However, telomeres in WS cells do not appear to show accelerated rates of erosion. Thus the cause of the accelerated senescence is not understood. Several features of WS cells suggest that they are growing under conditions of stress, and low oxygen conditions and antioxidant treatment revert some of the accelerated senescence phenotype. In addition, WS cells have significant levels of genomic instability. Oxidative stress and genomic instability result in the activation of stress kinases such as p38, and the p38-specifi c inhibitor SB203580 essentially prevents the accelerated senescence seen in WS fi broblasts. The recent development of p38 inhibitors with different binding properties, specifi cities, and oral bioavailability, and of new potent and selective inhibitors of other stress kinases such as JNK and MK2, will make it possible to dissect the roles of various kinase pathways in the accelerated senescence of WS cells. If this accelerated senescence is refl ective of WS ageing in vivo, these kinase inhibitors may well form the basis of anti-ageing therapeutics for individuals with WS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelfalk C, Scherthan H, Hirsch-Kauffmann M, Schweiger M (2005) Nuclear deformation characterises Werner syndrome cells. Cell Biol Int 29: 1032–37.

    PubMed  CAS  Google Scholar 

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89: 10114–18.

    PubMed  CAS  Google Scholar 

  • Anderson DR, Hegde S, Reinhard E, Gomez L, Vernier WF, Lee L, Liu S, Sambandam A, Snider PA Masih L (2005) Aminocyanopyridine inhibitors of mitogen activated protein kinase-activated protein kinase 2 (MK-2). Bioorg Med Chem Lett 15: 1587–90.

    PubMed  CAS  Google Scholar 

  • Bai Y, Murnane JP (2003) Telomere instability in a human tumor cell line expressing a dominant-negative WRN protein. Hum Genet 113: 337–47.

    PubMed  CAS  Google Scholar 

  • Baird DM, Davis T, Rowson J, Jones CJ, Kipling D (2004) Normal telomere erosion rates at the single cell level in Werner syndrome fibroblast cells. Hum Mol Genet 13: 1515–24.

    PubMed  CAS  Google Scholar 

  • Beddy DJ, Watson WR, Fitzpatrick JM, O’Connell PR (2004) Critical involvement of stress-activated mitogen-activated protein kinases in the regulation of intracellular adhesion molecule-1 in serosal fibroblasts isolated from patients with Crohn’s disease. J Am Coll Surg 199: 234–42.

    PubMed  Google Scholar 

  • Benn PA (1985) Chromosome translocations in fibroblast cultures derived from patients with Werner’s syndrome. Am J Hum Genet 37: 221–23.

    PubMed  CAS  Google Scholar 

  • Bird J, Ostler EL, Faragher RG (2003) Can we say that senescent cells cause ageing? Exp Gerontol 38: 1319–26.

    PubMed  CAS  Google Scholar 

  • Blackburn EH (1991) Structure and function of telomeres. Nature 350: 569–73.

    PubMed  CAS  Google Scholar 

  • Blackburn EH (2000) Telomere states and cell fates. Nature 408: 53–56.

    PubMed  CAS  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–52.

    PubMed  CAS  Google Scholar 

  • Bohr VA (2005) Deficient DNA repair in the human progeroid disorder, Werner syndrome. Mutat Res 577: 252–59.

    PubMed  CAS  Google Scholar 

  • Bohr VA, Metter EJ, Harrigan JA, von Kobbe C, Liu JL, Gray MD, Majumdar A, Wilson DM, Seidman MM (2004) Werner syndrome protein 1367 variants and disposition towards coronary artery disease in Caucasian patients. Mech Ageing Dev 125: 491–96.

    PubMed  CAS  Google Scholar 

  • Brosh RM, Waheed J, Sommers JA (2002) Biochemical characterization of the DNA substrate specificity of Werner syndrome helicase. J Biol Chem 277: 23236–45.

    PubMed  CAS  Google Scholar 

  • Brown WT, Kieras FJ, Houck GE, Dutkowski R, Jenkins EC (1985) A comparison of adult and childhood progerias: Werner syndrome and Hutchinson-Gilford progeria syndrome. Adv Exp Med Biol 190: 229–44.

    PubMed  CAS  Google Scholar 

  • Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18: 6845–54.

    PubMed  CAS  Google Scholar 

  • Campisi J (2000) Cancer, aging and cellular senescence. In Vivo 14: 183–88.

    PubMed  CAS  Google Scholar 

  • Castro E, Ogburn CE, Hunt KE, Tilvis R, Louhija J, Penttinen R, Erkkola R, Panduro A, Riestra R, Piussan C, Deeb SS, Wang L, Edland SD, Martin GM, Oshima J (1999) Polymorphisms at the Werner locus: I. Newly identified polymorphisms, ethnic variability of 1367Cys/Arg, and its stability in a population of Finnish centenarians. Am J Med Genet 82: 399–403.

    PubMed  CAS  Google Scholar 

  • Castro E, Edland SD, Lee L, Ogburn CE, Deeb SS, Brown G, Panduro A, Riestra R, Tilvis R, Louhija J, Penttinen R, Erkkola R, Wang L, Martin GM, Oshima J (2000) Polymorphisms at the Werner locus: II. 1074Leu/Phe, 1367Cys/Arg, longevity, and atherosclerosis. Am J Med Genet 95: 374–80.

    PubMed  CAS  Google Scholar 

  • Chabaud-Riou M, Firestein GS (2004) Expression and activation of mitogen-activated protein kinase kinases-3 and -6 in rheumatoid arthritis. Am J Pathol 164: 177–84.

    PubMed  CAS  Google Scholar 

  • Chang S (2005) A mouse model of Werner Syndrome: what can it tell us about aging and cancer? Int J Biochem Cell Biol 37: 991–99.

    PubMed  CAS  Google Scholar 

  • Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36: 877–82.

    PubMed  CAS  Google Scholar 

  • Cheng RZ, Murano S, Kurz B, Shmookler Reis RJ (1990) Homologous recombination is elevated in some Werner-like syndromes but not during normal in vitro or in vivo senescence of mammalian cells. Mutat Res 237: 259–69.

    PubMed  CAS  Google Scholar 

  • Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, Greider CW, DePinho RA (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97: 527–38.

    PubMed  CAS  Google Scholar 

  • Choi D, Whittier PS, Oshima J, Funk WD (2001) Telomerase expression prevents replicative senescence but does not fully reset mRNA expression patterns in Werner syndrome cell strains. FASEB J 15: 1014–20.

    PubMed  CAS  Google Scholar 

  • Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID West SC (2000) Werner’s syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 1: 80–84.

    PubMed  CAS  Google Scholar 

  • Crabbe L, Verdun RE, Haggblom CI, Karlseder J (2004) Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306: 1951–53.

    PubMed  CAS  Google Scholar 

  • Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC (1998) Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA 95: 10614–19.

    PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426: 194–98.

    PubMed  Google Scholar 

  • Davis T, Kipling D (2005) Telomeres and telomerase biology in vertebrates: progress towards a non-human model for replicative senescence and ageing. Biogerontology 6: 371–85.

    PubMed  CAS  Google Scholar 

  • Davis T, Kipling D (2006) Werner Syndrome as an example of inflamm-ageing: possible therapeutic opportunities for a progeroid syndrome? Rejuv Res 9: 402–07.

    CAS  Google Scholar 

  • Davis T, Baird DM, Haughton MF, Jones CJ, Kipling D (2005) Prevention of accelerated cell aging in Werner Syndrome using a p38 mitogen-activated protein kinase inhibitor. J Gerontol. A Biol Sci Med Sci 60: 1386–93

    Google Scholar 

  • Davis T, Haughton MF, Jones CJ, Kipling D (2006) Prevention of accelerated cell ageing in Werner Syndrome. Ann NY Acad Sci 1067: 243–47.

    PubMed  CAS  Google Scholar 

  • Davis T, Wyllie FS, Rokicki MJ, Bagley MC, Kipling D (2007) The role of cellular senescence in Werner syndrome: towards therapeutic intervention in human premature ageing. Ann NY Acad Sci 1100: 455–69.

    PubMed  CAS  Google Scholar 

  • de Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5: 323–29.

    PubMed  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19: 2100–10.

    PubMed  Google Scholar 

  • Deng Q, Liao R, Wu BL, Sun P (2004) High intensity ras signaling induces premature senescence by activating p38 pathway in primary human fibroblasts. J Biol Chem 279: 1050–59.

    PubMed  CAS  Google Scholar 

  • De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Levy N (2003) Lamin A truncation in Hutchinson-Gilford progeria. Science 300: 2055.

    PubMed  Google Scholar 

  • Dumont P, Royer V, Pascal T, Dierick JF, Chainiaux F, Frippiat C, de Magalhaes JP, Eliaers F, Remacle J, Toussaint O (2001) Growth kinetics rather than stress accelerate telomere shortening in cultures of human diploid fibroblasts in oxidative stress-induced premature senescence. FEBS Lett 502: 109–12.

    PubMed  CAS  Google Scholar 

  • Elli R, Chessa L, Antonelli A, Petrinelli P, Ambra R, Marcucci L (1996) Effects of topoisomerase II inhibition in lymphoblasts from patients with progeroid and “chromosome instability” syndromes. Cancer Genet Cytogenet 87: 112–16.

    PubMed  CAS  Google Scholar 

  • Faragher RGA, Kill IR, Hunter JA, Pope FM, Tannock C, Shall S (1993) The gene responsible for Werner syndrome may be a cell division “counting” gene. Proc Natl Acad Sci USA 90: 12030–34.

    PubMed  CAS  Google Scholar 

  • Force T, Kuida K, Namchuk M, Parang K, Kyriakis JM (2004) Inhibitors of protein kinase signaling pathways: emerging therapies for cardiovascular disease. Circulation 109: 1196–1205.

    PubMed  CAS  Google Scholar 

  • Forsyth NR, Evans AP, Shay JW, Wright WE (2003) Developmental differences in the immortalization of lung fibroblasts by telomerase. Aging Cell 2: 235–43.

    PubMed  CAS  Google Scholar 

  • Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 908: 244–54.

    Article  PubMed  CAS  Google Scholar 

  • Fry M, Loeb LA (1999) Human Werner Syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG) n. J Biol Chem 274: 12797–802.

    PubMed  CAS  Google Scholar 

  • Fujiwara Y, Higashikawa T, Tatsumi M (1977) A retarded rate of DNA replication and normal level of DNA repair in Werner’s syndrome fibroblasts in culture. J Cell Physiol 92: 365–74.

    PubMed  CAS  Google Scholar 

  • Fukuchi K, Martin GM, Monnat RJ (1989) Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci USA 86: 5893–97.

    PubMed  CAS  Google Scholar 

  • Funk WD, Wang CK, Shelton DN, Harley CB, Pagon GD, Hoeffler WK (2000) Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model. Exp Cell Res 258: 270–78.

    PubMed  CAS  Google Scholar 

  • Gaillard P, Jeanclaude-Etter I, Ardissone V, Arkinstall S, Cambet Y, Camps M, Chabert C, Church D, Cirillo R, Gretener D, Halazy S, Nichols A, Szyndralewiez C, Vitte PA, Gotteland JP (2005) Design and synthesis of the first generation of novel potent, selective, and in vivo active (benzothiazol-2-yl) acetonitrile inhibitors of the c-Jun N-terminal kinase. J Med Chem 48: 4596–607.

    PubMed  CAS  Google Scholar 

  • Garfinkel S, Brown S, Wessendorf JHM, Maciag T (1994) Post-transcriptional regulation of interleukin 1 in various strains of young and senescent human umbilical vein endothelial cells. Proc Natl Acad Sci USA 91: 1559–63.

    PubMed  CAS  Google Scholar 

  • Gebhart E, Bauer R, Raub U, Schinzel M, Ruprecht KW, Jonas JB (1988) Spontaneous and induced chromosomal instability in Werner syndrome. Hum Genet 80: 135–39.

    PubMed  CAS  Google Scholar 

  • Godl K, Daub H (2004) Proteomic analysis of kinase inhibitor selectivity and function. Cell Cycle 3: 393–95.

    PubMed  CAS  Google Scholar 

  • Goldstein DM, Gabriel T (2005) Pathway to development of p38 MAP kinase. A review of ten chemotypes selected for development. Curr Top Med Chem 5: 1017–29.

    PubMed  CAS  Google Scholar 

  • Goldstein DM, Alfredson T, Bertrand J, Browner MF, Clifford K, Dalrymple SA, Dunn J, Freire-Moar J, Harris S, Labadie SS, La Fargue J, Lapierr, JM, Larrabee S, Li F, Papp E, McWeeney D, Ramesha C, Roberts R, Rotstein D, San Pablo B, Sjogren EB, So OY, Talamas FX, Tao W, Trejo A, Villasenor A, Welch M, Welch T, Weller P, Whiteley PE, Young K, Zipfel S (2006) Discovery of S-[5-amino-1-(4-fluorophenyl)-1H-pyrazol-4-yl]-[3-(2, 3-dihydroxypropoxy) phenyl]methanone (RO3201195), an orally bioavailable and highly selective inhibitor of p38 MAP kinase. J Med Chem 49: 1562–75.

    PubMed  CAS  Google Scholar 

  • Gorgoulis VG, Pratsinis H, Zacharatos P, Demoliou C, Sigala F, Asimacopoulos PJ, Papavassiliou AG, Kletsas D (2005) p53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab Invest 85: 502–11.

    PubMed  CAS  Google Scholar 

  • Goto M, Miller RW, Ishikawa Y, Sugano H (1996) Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomarkers Prev 5: 236–46.

    Google Scholar 

  • Goto M (1997) Hierarchical deterioration of body systems in Werner’s syndrome: implications for normal ageing. Mech Ageing Dev 98: 239–54.

    PubMed  CAS  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–14.

    PubMed  CAS  Google Scholar 

  • Haq R, Brenton JD, Takahashi M, Finan D, Finkielsztein A, Damaraju S, Rottapel R, Zanke B (2002) Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence. Cancer Res 62: 5076–82.

    PubMed  CAS  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345: 458–60.

    PubMed  CAS  Google Scholar 

  • Hastie ND, Dempster M, Dunlop MG, Thompson AM, Green DK, Allshire RC (1990) Telomere reduction in human colorectal carcinoma and with ageing. Nature 346: 866–68.

    PubMed  CAS  Google Scholar 

  • Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107: 67–77.

    PubMed  CAS  Google Scholar 

  • Hentze MW, Kulozik AE (1999) A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96: 307–10.

    PubMed  CAS  Google Scholar 

  • Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311: 1257.

    PubMed  CAS  Google Scholar 

  • Hickson ID (2003) RecQ helicases: caretakers of the genome. Nat Rev Cancer 3: 169–78.

    PubMed  CAS  Google Scholar 

  • Hisama FM, Chen YH, Meyn MS, Oshima J, Weissman SM (2000) WRN or telomerase constructs reverse 4-nitroquinoline 1-oxide sensitivity in transformed Werner syndrome fibroblasts. Cancer Res 60: 2372–76.

    PubMed  CAS  Google Scholar 

  • Hockemeyer D, Sfeir AJ, Shay JW, Wright WE, de Lange T (2005) POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J 24: 2667–78.

    PubMed  CAS  Google Scholar 

  • Hoehn H, Bryant EM, Au K, Norwood TH, Boman H, Martin GM (1975) Variegated translocation mosaicism in human skin fibroblast cultures. Cytogenet Cell Genet 15: 282–98.

    PubMed  CAS  Google Scholar 

  • Hoeijmakers JH (2001) DNA repair mechanisms. Maturitas 38: 17–22.

    PubMed  CAS  Google Scholar 

  • Hofer AC, Tran RT, Aziz OZ, Wright W, Novelli G, Shay J, Lewis M (2005) Shared phenotypes among segmental progeroid syndromes suggest underlying pathways of aging. J Gerontol A Biol Sci Med Sci 60: 10–20.

    PubMed  Google Scholar 

  • Hollenbach E, Neumann M, Vieth M, Roessner A, Malfertheiner P, Naumann M (2004) Inhibition of p38 MAP kinase- and RICK/NF-kappaB-signaling suppresses inflammatory bowel disease. FASEB J 18: 1550–52.

    PubMed  CAS  Google Scholar 

  • Hollenbach E, Vieth M, Roessner A, Neumann M, Malfertheiner P, Naumann M (2005) Inhibition of RICK/nuclear factor-kappaB and p38 signaling attenuates the inflammatory response in a murine model of Crohn disease. J Biol Chem 280: 14981–88.

    PubMed  CAS  Google Scholar 

  • Huang S, Lee L, Hanson NB, Lenaerts C, Hoehn H, Poot M, Rubin CD, Chen DF, Yang CC, Juch H, Dorn, T, Spiegel R, Oral EA, Abid M, Battisti C, Lucci-Cordisco E, Neri G, Steed EH, Kidd A, Isley W, Showalter D, Vittone JL, Konstantinow A, Ring J, Meyer P, Wenger SL, von Herbay A, Wollina U, Schuelke M, Huizenga CR, Leistritz DF, Martin GM, Mian IS, Oshima J (2006) The spectrum of WRN mutations in Werner syndrome patients. Hum Mutat 27: 558–67.

    PubMed  CAS  Google Scholar 

  • Huot J, Houle F, Marceau F, Landry J (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res 80: 383–92.

    PubMed  CAS  Google Scholar 

  • Iwasa H, Han J, Ishikawa F (2003) Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 8: 131–44.

    PubMed  CAS  Google Scholar 

  • James SE, Faragher RGA, Burke JF, Shall S, Mayne LV (2000) Werner’s syndrome T lymphocytes display a normal in vitro life-span. Mech Ageing Dev 121: 139–49.

    PubMed  CAS  Google Scholar 

  • Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 12: 36–44.

    Google Scholar 

  • Johnson FB, Marciniak RA, McVey M, Stewart SA, Hahn WC, Guarente L (2001) The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J 20: 905–13.

    PubMed  CAS  Google Scholar 

  • Kamath-Loeb AS, Loeb LA, Johansson E, Burgers PM, Fry M (2001) Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG) n trinucleotide repeat sequence. J Biol Chem 276: 16439–46.

    PubMed  CAS  Google Scholar 

  • Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295: 2446–49.

    PubMed  CAS  Google Scholar 

  • Kashino G, Kodama S, Nakayama Y, Suzuki K, Fukase K, Goto M, Watanabe M (2003) Relief of oxidative stress by ascorbic acid delays cellular senescence of normal human and Werner syndrome fibroblast cells. Free Radic Biol Med 35: 438–43.

    PubMed  CAS  Google Scholar 

  • Keys B, Serra V, Saretzki G, Von Zglinicki T (2004) Telomere shortening in human fibroblasts is not dependent on the size of the telomeric-3K-overhang. Aging Cell 3: 103–09.

    PubMed  CAS  Google Scholar 

  • Kill IR, Faragher RGA, Lawrence K, Shall S (1994) The expression of proliferation-dependent antigens during the lifespan of normal and progeroid human fibroblasts in culture. J Cell Sci 107: 571–79.

    PubMed  CAS  Google Scholar 

  • Kim GY, Mercer SE, Ewton DZ, Yan Z, Jin K, Friedman E (2002) The stress-activated protein kinases p38 alpha and JNK1 stabilize p21(Cip1) by phosphorylation. J Biol Chem 277: 29792–802.

    PubMed  CAS  Google Scholar 

  • Kipling D, Davis T, Ostler EL, Faragher RG (2004) What can progeroid syndromes tell us about human aging? Science 305: 1426–31.

    PubMed  CAS  Google Scholar 

  • Krtolica AR, Campisi J (2002) Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 34: 1401–14.

    PubMed  CAS  Google Scholar 

  • Kumar S, Millis AJ, Baglioni C (1992) Expression of interleukin 1-inducible genes and production of interleukin 1 by aging human fibroblasts. Proc Natl Acad Sci USA 89: 4683–87.

    PubMed  CAS  Google Scholar 

  • Kumar S, Vinci JM, Millis AJ, Baglioni C (1993) Expression of interleukin-1 alpha and beta in early passage fibroblasts from aging individuals. Exp Gerontol 28: 505–13.

    PubMed  CAS  Google Scholar 

  • Kuningas M, Slagboom PE, Westendorp RG, van Heemst D (2006). Impact of genetic variations in the WRN gene on age related pathologies and mortality. Mech Ageing Dev 127: 307–13.

    PubMed  CAS  Google Scholar 

  • Lans H, Hoeijmakers JHJ (2006) Ageing nucleus gets out of shape. Nature 440: 32–34.

    PubMed  CAS  Google Scholar 

  • Lavigne P, Benderdour M, Lajeunesse D, Shi Q, Fernandes JC (2004) Expression of ICAM-1 by osteoblasts in healthy individuals and in patients suffering from osteoarthritis and osteoporosis. Bone 35: 463–70.

    PubMed  CAS  Google Scholar 

  • Liu M, Xin Z, Clampit JE, Wang, S, Gum RJ, Haasch DL, Trevillyan JM, Abad-Zapatero C, Fry EH, Sham HL, Liu G (2006) Synthesis and SAR of 1, 9-dihydro-9-hydroxypyrazolo[3, 4-b] quinolin-4-ones as novel, selective c-Jun N-terminal kinase inhibitors. Bioorg Med Chem Lett 16: 2590–94.

    Google Scholar 

  • Maier JA, Voulalas P, Roeder D, Maciag T (1990) Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science 249: 1570–74.

    PubMed  CAS  Google Scholar 

  • Martin GM, Oshima J, Gray MD, Poot M (1999) What geriatricians should know about the Werner syndrome. J Am Geriatr Soc 47: 1136–44.

    PubMed  CAS  Google Scholar 

  • Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB, Brooks MW, Kaneko S, Murakami S, DeCaprio JA, Weinberg RA, Stewart SA, Hahn WC (2003) Telomerase maintains telomere structure in normal human cells. Cell 114: 241–53.

    PubMed  CAS  Google Scholar 

  • Melcher R, von Golitschek R, Steinlein C, Schindler D, Neitzel H, Kainer K, Schmid M, Hoehn H (2000) Spectral karyotyping of Werner syndrome fibroblast cultures. Cytogenet Cell Genet 91: 180–85.

    PubMed  CAS  Google Scholar 

  • Miklossy J, Doudet DD, Schwab C, Yu S, McGeer EG, McGeer PL (2006) Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp Neurol 197: 275–83.

    PubMed  CAS  Google Scholar 

  • Mohaghegh P, Karow JK, Brosh RM, Bohr VA, Hickson ID (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29: 2843–49.

    PubMed  CAS  Google Scholar 

  • Moser MJ, Holley WR, Chatterjee A, Mian IS (1997) The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res 25: 5110–18.

    PubMed  CAS  Google Scholar 

  • Moser MJ, Oshima J, Monnat RJ (1999) WRN mutations in Werner syndrome. Hum Mutat 13: 271–79.

    PubMed  CAS  Google Scholar 

  • Moser MJ, Kamath-Loeb AS, Jacob JE, Bennett SE, Oshima J, Monnat RJ (2000) WRN helicase expression in Werner syndrome cell lines. Nucleic Acids Res 28: 648–54.

    PubMed  CAS  Google Scholar 

  • Muller FB, Tsianakas A, Kuwert C, Korge BP, Hunzelmann N (2005) A novel compound heterozygous mutation in Werner syndrome results in WRN transcript decay. Br J Dermatol 152: 1030–32.

    PubMed  CAS  Google Scholar 

  • Murano S, Nakazawa A, Saito I, Masuda M, Morisaki N, Akikusa B, Tsuboyama T, Saito Y (1997) Increased blood plasminogen activator inhibitor-1 and intercellular adhesion molecule-1 as possible risk factors of atherosclerosis in Werner syndrome. Gerontology 43 Suppl 1: 43–52.

    Google Scholar 

  • O’Hare MJ, Bond J, Clarke C, Takeuchi Y, Atherton AJ, Berry C, Moody J, Silver AR, Davies DC, Alsop AE, Neville AM, Jat PS (2001) Conditional immortalization of freshly isolated human mammary fibroblasts and endothelial cells. Proc Natl Acad Sci USA 98, 646–51.

    PubMed  Google Scholar 

  • Ogburn CE, Oshima J, Poot M, Chen R, Hunt KE, Gollahon KA, Rabinovitch PS, Martin GM (1997) An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet 101: 121–25.

    PubMed  CAS  Google Scholar 

  • Okada M, Goto M, Furuichi Y, Sugimoto M (1998) Differential effects of cytotoxic drugs on mortal and immortalized B-lymphoblastoid cell lines from normal and Werner’s syndrome patients. Biol Pharm Bull 21: 235–39.

    PubMed  CAS  Google Scholar 

  • Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41: 181–90.

    PubMed  CAS  Google Scholar 

  • Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA (2002) Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277: 41110–19.

    PubMed  CAS  Google Scholar 

  • Opresko PL, Cheng WH, von Kobbe C, Harrigan JA, Bohr VA (2003) Werner syndrome and the function of the Werner protein; what they can teach us about the molecular aging process. Carcinogenesis 24: 791–802.

    PubMed  CAS  Google Scholar 

  • Opresko PL, Otterlei M, Graakjaer J, Bruheim P, Dawut L, Kolvraa S, May A, Seidman MM, Bohr VA (2004) The Werner syndrome helicase and exonuclease cooperate to resolve telomeric D loops in a manner regulated by TRF1 and TRF2. Mol Cell 14: 763–74.

    PubMed  CAS  Google Scholar 

  • Opresko PL, Mason PA, Podell ER, Lei M, Hickson ID, Cech TR, Bohr VA (2005) POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates. J Biol Chem 280: 32069–80.

    PubMed  CAS  Google Scholar 

  • Orren DK, Theodore S, Machwe A (2002) The Werner syndrome helicase/exonuclease (WRN) disrupts and degrades D-loops in vitro. Biochemistry 41: 13483–88.

    PubMed  CAS  Google Scholar 

  • Ostler EL, Wallis CV, Sheerin AN, Faragher RGA (2002) A model for the phenotypic presentation of Werner’s syndrome. Exp Gerontol 37: 285–92.

    PubMed  CAS  Google Scholar 

  • Ouellette MM, McDaniel LD, Wright WE, Shay JW, Schultz RA (2000) The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Hum Mol Genet 9: 403–11.

    PubMed  CAS  Google Scholar 

  • Pagano G, Zatterale A, Degan P, d’Ischia M, Kelly FJ, Pallardo FV, Calzone R, Castello G, Dunster C, Giudice A, Kilinc Y, Lloret A, Manini P, Masella R, Vuttariello E, Warnau M (2005a) In vivo prooxidant state in Werner syndrome (WS): results from three WS patients and two WS heterozygotes. Free Radic Res 39: 529–33.

    PubMed  CAS  Google Scholar 

  • Pagano G, Zatterale A, Degan P, d’Ischia M, Kelly FJ, Pallardo FV, Kodama S (2005b) Multiple involvement of oxidative stress in Werner syndrome phenotype. Biogerontology 6: 233–43.

    PubMed  CAS  Google Scholar 

  • Pichierri P, Franchitto A (2004) Werner syndrome protein, the MRE11 complex and ATR: menage-a-trois in guarding genome stability during DNA replication? Bioessays 26: 306–13.

    PubMed  CAS  Google Scholar 

  • Postiglione A, Soricelli A, Covelli EM, Iazzetta N, Ruocco A, Milan G, Santoro L, Alfano B, Brunett A (1996) Premature aging in Werner’s syndrome spares the central nervous system. Neurobiol Aging 17: 325–30.

    PubMed  CAS  Google Scholar 

  • Poot M, Gollahon KA, Rabinovitch PS (1999) Werner syndrome lymphoblastoid cells are sensitive to camptothecin-induced apoptosis in S-phase. Hum Genet 104: 10–14.

    PubMed  CAS  Google Scholar 

  • Poot M, Gollahon KA, Emond MJ, Silber JR, Rabinovitch PS (2002) Werner syndrome diploid fibroblasts are sensitive to 4-nitroquinoline-N-oxide and 8-methoxypsoralen: implications for the disease phenotype. FASEB J 16: 757–58.

    PubMed  CAS  Google Scholar 

  • Prince PR, Ogburn CE, Moser MJ, Emond MJ, Martin GM, Monnat RJ (1999) Cell fusion corrects the 4-nitroquinoline 1-oxide sensitivity of Werner syndrome fibroblast cell lines. Hum Genet 105: 132–38.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Lopez AM, Jackson DA, Iborra F, Cox LS (2002) Asymmetry of DNA replication fork progression in Werner’s syndrome. Aging Cell 1: 30–39.

    PubMed  Google Scholar 

  • Rubin H (2002) The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat Biotechnol 20: 675–81.

    PubMed  CAS  Google Scholar 

  • Rudolph KL, Chan S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96: 701–12.

    PubMed  CAS  Google Scholar 

  • Saintigny Y, Makienko K, Swanson C, Emond MJ, Monnat RJ (2002) Homologous recombination resolution defect in werner syndrome. Mol Cell Biol 22: 6971–78.

    PubMed  CAS  Google Scholar 

  • Saito H, Hammond AT, Moses RE (1995) The effect of low oxygen tension on the in vitro-replicative life span of human diploid fibroblast cells and their transformed derivatives. Exp Cell Res 217: 272–79.

    PubMed  CAS  Google Scholar 

  • Salk D (1982) Werner’s syndrome: a review of recent research with an analysis of connective tissue metabolism, growth control of cultured cells, and chromosomal aberrations. Hum Genet 62: 1–5.

    PubMed  CAS  Google Scholar 

  • Salk D, Au K, Hoehn H, Martin GM (1981a) Cytogenetics of Werner’s syndrome cultured skin fibroblasts: variegated translocation mosaicism. Cytogenet Cell Genet 30: 92–107.

    PubMed  CAS  Google Scholar 

  • Salk D, Au K, Hoehn H, Martin GM (1981b) Effects of radical-scavenging enzymes and reduced oxygen exposure on growth and chromosome abnormalities of Werner syndrome cultured skin fibroblasts. Hum Genet 57: 269–75.

    PubMed  CAS  Google Scholar 

  • Salk D, Bryant E, Au K, Hoehn H, Martin GM (1981c) Systematic growth studies, cocultivation, and cell hybridization studies of Werner syndrome cultured skin fibroblasts. Hum Genet 58: 310–16.

    PubMed  CAS  Google Scholar 

  • Saretzki G, Sitte N, Merkel U, Wurm RE, von Zglinicki T (1999) Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments. Oncogene 18: 5148–58.

    PubMed  CAS  Google Scholar 

  • Satoh M, Imai M, Sugimoto M, Goto M, Furuichi Y (1999) Prevalence of Werner’s syndrome heterozygotes in Japan. Lancet 353: 1766.

    PubMed  CAS  Google Scholar 

  • Satyanarayana A, Greenberg RA, Schaetzlein S, Buer J, Masutomi K, Hahn WC, Zimmermann S, Martens U, Manns MP, Rudolph KL (2004) Mitogen stimulation cooperates with telomere shortening to activate DNA damage responses and senescence signaling. Mol Cell Biol 24: 5459–547.

    PubMed  CAS  Google Scholar 

  • Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, Brenner D (2003) Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37: 653–64.

    PubMed  CAS  Google Scholar 

  • Schonberg S, Niermeijer MF, Bootsma D, Henderson E, German J (1984) Werner’s syndrome: proliferation in vitro of clones of cells bearing chromosome translocations. Am J Hum Genet 36: 387–97.

    PubMed  CAS  Google Scholar 

  • Schulz VP, Zakian VA, Ogburn CE, McKay J, Jarzebowicz AA, Edland SD, Martin GM (1996) Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum Genet 97: 750–54.

    PubMed  CAS  Google Scholar 

  • Shelton DN, Chang E, Whittier PS, Choi D, Funk WD (1999) Microarray analysis of replicative senescence. Curr Biol 9: 939–45.

    PubMed  CAS  Google Scholar 

  • Shen J, Loeb LA (2001) Unwinding the molecular basis of the Werner syndrome. Mech Ageing Dev 122: 921–44.

    PubMed  CAS  Google Scholar 

  • Spillare EA, Robles AI, Wang XW, Shen JC, Yu CE, Schellenberg GD, Harris CC (1999) p53-mediated apoptosis is attenuated in Werner syndrome cells. Genes Dev 13: 1355–60.

    PubMed  CAS  Google Scholar 

  • Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3y telomeric overhang. EMBO J 20: 5532–40.

    PubMed  CAS  Google Scholar 

  • Stewart SA, Ben-Porath I, Carey VJ, O’Connor BF, Hahn WC, Weinberg RA (2003) Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 33: 492–96.

    PubMed  CAS  Google Scholar 

  • Suzuki T, Shiratori M, Furuichi Y, Matsumoto T (2001) Diverged nuclear localization of Werner helicase in human and mouse cells. Oncogene 20: 2551–58.

    PubMed  CAS  Google Scholar 

  • Szczepankiewicz BG, Kosogof C, Nelson LT, Liu G, Liu B, Zhao H, Serby MD, Xin Z, Liu M, Gum R, Haasch DL, Wang S, Clampit JE, Johnson EF, Lubben TH, Stashko MA, Olejniczak ET, Sun C, Dorwin SA, Haskins K, Abad-Zapatero C, Fry EH, Hutchins CW, Sham HL, Rondinone CM, Trevillyan JM (2006) Aminopyridine-based c-Jun N-terminal kinase inhibitors with cellular activity and minimal cross-kinase activity. J Med Chem 49: 3563–80.

    PubMed  CAS  Google Scholar 

  • Tahara H, Tokutake Y, Maeda S, Kataoka H, Watanabe T, Satoh M, Matsumoto T, Sugawara M, Ide T, Goto M, Furuichi Y, Sugimoto M (1997) Abnormal telomere dynamics of B-lymphoblastoid cell strains from Werner’s syndrome patients transformed by Epstein-Barr virus. Oncogene 15: 1911–20.

    PubMed  CAS  Google Scholar 

  • Tollefsbol TO, Cohen HJ (1984) Werner’s syndrome: An underdiagnosed disorder resembling premature aging. Age 7: 75–88.

    Google Scholar 

  • van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92: 401–13.

    PubMed  Google Scholar 

  • Vaziri H, Benchimol S (1996) From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol 31: 295–301.

    PubMed  CAS  Google Scholar 

  • Vaziri H, Benchimol S (1998) Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol 8: 279–82.

    PubMed  CAS  Google Scholar 

  • Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 91: 9857–60.

    PubMed  CAS  Google Scholar 

  • Vainer B (2005) Intercellular adhesion molecule-1 (ICAM-1) in ulcerative colitis: presence, visualization, and significance. Inflamm Res 54: 313–27.

    PubMed  CAS  Google Scholar 

  • Vande Berg JS, Rose MA, Haywood-Reid PL, Rudolph R, Payne WG, Robson MC (2005) Cultured pressure ulcer fibroblasts show replicative senescence with elevated production of plasmin, plasminogen activator inhibitor-1, and transforming growth factor-beta1. Wound Repair Regen. 13: 76–83.

    Google Scholar 

  • Verdun RE, Karlseder J (2006) The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127: 709–20.

    PubMed  CAS  Google Scholar 

  • Vijg J, Calder RB (2004) Transcripts of aging. Trends Genet 20: 221–24.

    PubMed  CAS  Google Scholar 

  • von Zglinicki T, Burkle A, Kirkwood TB (2001) Stress, DNA damage and ageing–an integrative approach. Exp Gerontol 36: 1049–62.

    Google Scholar 

  • Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S, Sun P (2002) Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6–p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 22: 3389–3403.

    PubMed  Google Scholar 

  • Werner O (1904). On cataract associated in conjunction with scleroderma. Doctoral Dissertation, Kiel University, Schmidt and Klaunig, Kiel.

    Google Scholar 

  • Wyllie FS, Jones CJ, Skinner JW, Haughton MF, Wallis C, Wynford-Thomas D, Faragher RGA, Kipling D (2000) Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nat Genet 24: 16–17.

    PubMed  CAS  Google Scholar 

  • Yamabe Y, Sugimoto M, Satoh M, Suzuki N, Sugawara M, Goto M, Furuichi Y (1997) Down-regulation of the defective transcripts of the Werner’s syndrome gene in the cells of patients. Biochem Biophys Res Commun 236: 151–54.

    PubMed  CAS  Google Scholar 

  • Yokote K, Honjo S, Kobayashi K, Fujimoto M, Kawamura H, Mori S, Saito Y (2004) Metabolic improvement and abdominal fat redistribution in Werner syndrome by pioglitazone. J Am Geriatr Soc 52: 1582–83.

    PubMed  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272: 258–62.

    PubMed  CAS  Google Scholar 

  • Zou Y, Sfeir A, Gryaznov SM, Shay JW, Wright WE (2004) Does a sentinel or a subset of short telomeres determine replicative senescence? Mol Biol Cell 15: 3709–18.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davis, T., Kipling, D. (2008). Werner Syndrome, Telomeres, and Stress Signaling: Implications for Future Therapies?. In: Rudolph, K.L. (eds) Telomeres and Telomerase in Ageing, Disease, and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73709-4_14

Download citation

Publish with us

Policies and ethics