Skip to main content

An increasingly growing number of human diseases including cancer and age-related diseases have been associated to telomeric dysfunction. The progressive telemore loss that occurs with aging in humans is proposed to contribute to the pathobiology of age-related diseases. Evidence for this comes from the study of mouse models that reproduce the corresponding full-blown human pathology only when in the setting of critically short telemores. Moreover, telomerase itself, as well as several telomere-binding proteins, has been found altered in human pathologies. Here, we will review recent findings suggesting that the length and function of telomeres are a biological determinant in the development of certain human diseases associated with aging, particularly from the perspective of mouse models for telomere dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey SM et al. (2001) Strand-specific postreplicative processing of mammalian telomeres. Science 293: 2462–65.

    PubMed  Google Scholar 

  • Baumann P, Cech TR (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292: 1171–75.

    PubMed  Google Scholar 

  • Bellon et al. (2006) Increased expression of telomere length regulating factors TRF1, TRF2 and TIN2 in patients with adult T-cell leukemia. Int J Cancer 119: 2090–7.

    PubMed  Google Scholar 

  • Bender J (1998) Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends Biochem Sci 23: 252–56.

    PubMed  Google Scholar 

  • Benetti R, Garcia-Cao M, Blasco MA (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nature Genetics 39: 243–350.

    PubMed  Google Scholar 

  • Blackburn EH (2001) Switching and signaling at the telomere. Cell 106: 661–73.

    PubMed  Google Scholar 

  • Blanco R, Muñoz P, Klatt P, Flores JM, Blasco MA (2007) Telomerase abrogation dramatically accelerates TRF2-induced epithelial carcinogenesis. Genes Dev 21: 206–20.

    PubMed  Google Scholar 

  • Blasco MA, Funk WD, Villeponteau B, Greider CW (1995) Functional characterization and developmental regulation of mouse telomerase RNA. Science 269: 1267–70.

    PubMed  Google Scholar 

  • Blasco MA et al. (1997) Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34.

    PubMed  Google Scholar 

  • Blasco MA, Hahn WC (2003) Evolving views of telomerase and cancer. Trends Cell Biol 13: 289–94.

    PubMed  Google Scholar 

  • Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6: 611–22.

    PubMed  Google Scholar 

  • Bradshaw PS, Stavropoulos DJ, Meyn MS (2005) Human telomeric protein TRF2 associates with genomic double-strand breaks as an early response to DNA damage. Nat Genet 37: 193–97.

    PubMed  Google Scholar 

  • Cawthon et al. (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361: 393–95.

    PubMed  Google Scholar 

  • Celli GB, de Lange T (2005) DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion. Nat Cell Biol 7: 712.

    PubMed  Google Scholar 

  • Chan SW, Blackburn EH (2002) New ways not to make ends meet: telomerase, DNA damage proteins and heterochromatin. Oncogene 21: 553–63.

    PubMed  Google Scholar 

  • Chang et al. (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36: 877–82.

    PubMed  Google Scholar 

  • Chang S, Khoo CM, Naylor ML, Maser RS, DePinho RA (2003) Telomere-based crisis: functional differences between telomerase activation and ALT in tumor progression. Genes Dev 17: 88–100.

    PubMed  Google Scholar 

  • Chen T, Tsujimoto N, Li E (2004) The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Moll Cell Biol 24: 9048–58.

    Google Scholar 

  • Chin et al. (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97: 527–38.

    PubMed  Google Scholar 

  • Chiang YJ, Kim SH, Tessarollo L, Campisi J, Hodes RJ (2004) Telomere-associated protein TIN2 is essential for early embryonic development through a telomerase-independent pathway.Mol Cell Biol 15: 6631–34.

    Google Scholar 

  • Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21: 564–79.

    PubMed  Google Scholar 

  • d’Adda di Fagagna et al. (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426: 194–98.

    PubMed  Google Scholar 

  • de Laat WL, Jaspers NG, Hoeijmakers JH (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13: 768–85.

    PubMed  Google Scholar 

  • de Lange T (2002) Protection of mammalian telomeres. Oncogene 21: 532–40.

    PubMed  Google Scholar 

  • de Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5: 323–29.

    PubMed  Google Scholar 

  • de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19: 2100–10.

    PubMed  Google Scholar 

  • de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM, Varmus HE (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10: 518–27.

    PubMed  Google Scholar 

  • Dominguez-Bendala J, McWhir J (2004) Enhanced gene targeting frequency in ES cells with low genomic methylation levels. Transgenic Res 13: 69–74.

    PubMed  Google Scholar 

  • Du et al. (2004) Telomere shortening exposes functions for the mouse Werner and Bloom syndrome genes. Mol Cell Biol 24: 8437–46.

    PubMed  Google Scholar 

  • Dunham MA, Neumann AA, Fasching CL, Reddel RR (2000) Telomere maintenance by recombination in human cells. Nat Genet 26: 447–50.

    PubMed  Google Scholar 

  • Dynek JN, Smith S (2004) Resolution of sister telomere association is required for progression through mitosis. Science 304: 97–100.

    PubMed  Google Scholar 

  • Epel et al. (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101: 17312–15.

    PubMed  Google Scholar 

  • Ferron et al. (2004) Telomere shortening and chromosomal instability abrogates proliferation of adult but not embryonic neural stem cells. Development 131: 4059–70.

    PubMed  Google Scholar 

  • Flores I, Cayuela ML, Blasco MA (2005) Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309: 1253–56.

    PubMed  Google Scholar 

  • Franco S, Segura I, Riese H, Blasco, MA (2002) Decreased B16F10 melanoma growth and impaired vascularization in telomerase-deficient mice with critically short telomeres. Cancer Res 62: 552–59.

    PubMed  Google Scholar 

  • Garcia-Cao M, Gonzalo S, Dean D, Blasco MA (2002) A role for the Rb family of proteins in controlling telomere length. Nat Genet 32: 415–19.

    PubMed  Google Scholar 

  • Garcia-Cao M, O’Sullivan R, Peters AH, Jenuwein T, Blasco MA (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36: 94–99.

    PubMed  Google Scholar 

  • Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA (2000) Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 26: 114–17.

    PubMed  Google Scholar 

  • Gonzalo et al. (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nature Cell Biol 8: 416.

    PubMed  Google Scholar 

  • Gonzalo S et al. (2005) Role of the RB1 family in stabilizing histone methylation at constitutive heterochromatin. Nat Cell Biol 7: 420–28.

    PubMed  Google Scholar 

  • Greenberg et al. (1999) Short dysfunctional telomeres impair tumorigenesis in the INK4a(delta2/3) cancer-prone mouse. Cell 97: 515–25.

    PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97: 503–14.

    PubMed  Google Scholar 

  • Hande MP, Samper E, Lansdorp P, Blasco MA (1999) Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J Cell Biol 44: 589–601.

    Google Scholar 

  • Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107: 67–77.

    PubMed  Google Scholar 

  • Herrera E, Martinez AC, Blasco MA (2000) Impaired germinal center reaction in mice with short telomeres. EMBO J 19: 472–81.

    PubMed  Google Scholar 

  • Herrera E, Samper E, Martin-Caballero J, Flores JM, Lee HW, Blasco MA (1999) Disease states associated to telomerase deficiency appear earlier in mice with short telomeres. EMBO J 18: 2950–60.

    PubMed  Google Scholar 

  • Hockemeyer D, Daniela JP, Takai H, de Lange T (2006) Recent expansion of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse telomeres. Cell 126: 63–77.

    PubMed  Google Scholar 

  • Jaco et al. (2003) Role of mammalian Rad54 in telomere length maintenance. Mol Cell Biol 23: 5572–80.

    PubMed  Google Scholar 

  • Jones PA, Baylin SB (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–28.

    PubMed  Google Scholar 

  • Kaminker et al. (2005) Higher-order nuclear organization in growth arrest of human mammary epithelial cells: a novel role for telomere-associated protein TIN2. J Cell Sci 183: 1321–30.

    Google Scholar 

  • Karlseder et al. (2003) Targeted deletion reveals an essential function for the telomere length regulator Trf1. Mol Cell Biol 23: 6533–41.

    PubMed  Google Scholar 

  • Karlseder et al. (2004) The telomeric protein TRF2 binds the ATM kinase and can inhibit the ATM-dependent DNA damage response. PLOS Biol 2: E240.

    PubMed  Google Scholar 

  • Kourmouli N et al. (2004) Heterochromatin and tri-methylated lysine 20 of histone 4 in mammals. J Cell Sci 117: 2491–2501.

    PubMed  Google Scholar 

  • Lachner M, O’Carroll D, Rea S, Mechtler K, Jenuwein T (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410: 116–20.

    PubMed  Google Scholar 

  • Laud PR et al. (2005) Elevated telomere-telomere recombination in WRN-deficient, telomere dysfunctional cells promotes escape from senescence and engagement of the ALT pathway. Genes Dev 19: 2560–70.

    PubMed  Google Scholar 

  • Lazzerini Denchi E, Celli G, de Lange T (2006) Hepatocytes with extensive telomere deprotection and fusion remain viable and regenerate liver mass through endoreduplication. Genes Dev 20: 2648–53.

    PubMed  Google Scholar 

  • Lee H-W, Blasco MA, Gottlieb GJ, Greider CW, RA. DePinho. (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392: 569–74.

    PubMed  Google Scholar 

  • Leri et al. (2003) Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 22: 131–39.

    PubMed  Google Scholar 

  • Liu D, Safari A, O’Connor MS, Chan DW, Laegeler A, Qin J, Songyang Z (2004) PTOP interacts with POT1 and regulates its localization to telomeres. Nat Cell Biol 6: 673–80.

    PubMed  Google Scholar 

  • Lundblad V. (2002) Telomere maintenance without telomerase. Oncogene 21: 522–31.

    PubMed  Google Scholar 

  • Maloisel L, Rossignol JL (1998) Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev 12: 1381–89.

    Google Scholar 

  • Makarov VL, Lejnine S, Bedoyan J, Langmore JP (1993) Nucleosomal organization of telomere-specific chromatin in rat. Cell 73: 775–87.

    PubMed  Google Scholar 

  • Marrone et al. (2004) Heterozygous telomerase RNA mutations found in dyskeratosis congenita and aplastic anemia reduce telomerase activity via haploinsufficiency. Blood 104: 3936–42.

    PubMed  Google Scholar 

  • Mason PJ, Wilson DB, Bessler M (2005) Dyskeratosis congenita–a disease of dysfunctional telomere maintenance. Curr Mol Med 5: 159–70.

    PubMed  Google Scholar 

  • Matsutani et al. (2001) Expression of telomeric repeat binding factor 1 and 2 and TRF1-interacting nuclear protein 2 in human gastric carcinomas. Int J Oncol 19: 507–12.

    PubMed  Google Scholar 

  • Mitchell JR, Wood E, Collins K (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402: 551–55.

    PubMed  Google Scholar 

  • Mochizuki et al. (2004) Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing. Proc Natl Acad Sci USA 101: 10756–761.

    PubMed  Google Scholar 

  • Muñoz et al. (2005) XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature ageing and cancer. Nature Genetics 10: 1063.

    Google Scholar 

  • Muntoni A, Reddel RR (2005) The first molecular details of ALT in human tumor cells. Hum Mol Genet 14: 191–96.

    Google Scholar 

  • Nakanishi et al. (2003) Expression of mRNAs for telomeric repeat binding factor (TRF)-1 and TRF2 in atypical adenomatous hyperplasia and adenocarcinoma of the lung. Clin Cancer Res 9: 1105–11.

    PubMed  Google Scholar 

  • Niida et al. (2000) Telomere maintenance in telomerase-deficient mouse embryonic stem cells: characterization of an amplified telomeric DNA. Mol Cell Biol 20: 4115–2417.

    PubMed  Google Scholar 

  • Oh et al. (2003) Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA 100: 5378–83.

    PubMed  Google Scholar 

  • Oh B-K, Kim Y-J, Park C, Park YN (2005) Up-regulation fo telomere-binding proteins, TRF1, TRF2, and TIN2 is related to telomere shortening during human multistep hepatocarcinogenesis. Am J Pathol 166: 73–80.

    PubMed  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–57.

    PubMed  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19: 219–20.

    PubMed  Google Scholar 

  • O’Sullivan et al. (2002) Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 32, 280–84.

    PubMed  Google Scholar 

  • Peters AH et al. (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107: 323–37.

    PubMed  Google Scholar 

  • Poch et al. (2004) Short telomeres protect from diet-induced atherosclerosis in apolipoprotein E-null mice. FASEB J 18: 418–20.

    PubMed  Google Scholar 

  • Prime G, Markie D (2005) The telomere repeat binding protein Trf1 interacts with the spindle checkpoint protein Mad1 and Nek2 mitotic kinase. Cell Cycle 4: 121–24.

    PubMed  Google Scholar 

  • Rudolph KL, Millard M, Bosenberg MW, DePinho RA (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28: 155–59.

    PubMed  Google Scholar 

  • Samani et al. (2001) Telomere shortening in atherosclerosis. Lancet 358: 472–73.

    PubMed  Google Scholar 

  • Samper E, Flores JM, Blasco MA (2001) Restoration of telomerase activity rescues chromosomal instability and premature ageing in Terc-/- mice with short telomeres. EMBO Rep 2: 800–07.

    PubMed  Google Scholar 

  • Samper et al. (2002) Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 99: 2767–75.

    PubMed  Google Scholar 

  • Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1L 244–52.

    Google Scholar 

  • Sarin KY et al. (2005) Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436: 1048–52.

    PubMed  Google Scholar 

  • Schotta G et al. (2004) A silencing pathway to induce H3–K9 and H4–K20 trimethylation at constitutive heterochromatin. Genes Dev 18: 1251–62.

    PubMed  Google Scholar 

  • Shay JW, Wright WE (2006) Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 5: 577–84.

    PubMed  Google Scholar 

  • Smith S, Giriat I, Schmitt A, de Lange T (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282: 1484–87.

    PubMed  Google Scholar 

  • Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G, de Lange T (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20: 1659–68.

    PubMed  Google Scholar 

  • Steinert S, Shay JW, Wright WE (2004) Modification of subtelomeric DNA. Mol Cell Biol 24: 4571.

    PubMed  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13: 1549–56.

    PubMed  Google Scholar 

  • Tarsounas et al. (2004) Telomere maintenance requires the RAD51D recombination/repair protein. Cell 117: 337–47.

    PubMed  Google Scholar 

  • Teixeira MT, Arneric M, Sperisen P, Lingner J (2004) Telomere length homeostasis is achieved via a switch between telomerase- extendible and -nonextendible states. Cell 117: 323–35.

    PubMed  Google Scholar 

  • Valdes et al. (2005) Obesity, cigarette smoking, and telomere length in women.Lancet 366: 662–64.

    Google Scholar 

  • van Steensel B, Smogorzewska A, de Lange T (1998) TRF2 protects human telomeres from end-to-end fusions. Cell 92: 401–13.

    PubMed  Google Scholar 

  • Vulliamy et al. (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413: 432–35.

    PubMed  Google Scholar 

  • Vulliamy et al. (2004) Disease anticipation is associated with progressive telomere shortening in families with dyskeratosis congenita due to mutations in TERC. Nat Genet 36: 447–49.

    PubMed  Google Scholar 

  • Wang RC, Smogorzewska A, de Lange T (2004) Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119: 355–68.

    PubMed  Google Scholar 

  • Wiemann et al. (2002) Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J 16: 935–42.

    PubMed  Google Scholar 

  • Wong et al. (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421: 643–48.

    PubMed  Google Scholar 

  • Wu et al. (2006) Pot1 deficiency initiates DNA damage checkpoint activation and aberrant homologous recombination at telomeres. Cell 126: 49–62.

    PubMed  Google Scholar 

  • Yamaguchi et al. (2005) Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 352: 1413–24.

    PubMed  Google Scholar 

  • Ye JZ, Hockemeyer D, Krutchinsky AN, Loayza D, Hooper SM, Chait BT, de Lange T (2004) POT1-interacting protein PIP1: a telomere length regulator that recruits POT1 to the TIN2/TRF1 complex. Genes Dev 18: 1649–54.

    PubMed  Google Scholar 

  • Zhu XD, Kuster B, Mann M, Petrini JH, Lange T (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25: 347–52.

    PubMed  Google Scholar 

  • Zhu et al. (2003) ERCC1/XPF removes the 3Z overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell 12: 1489–98.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blasco, M.A. (2008). Telomere Binding Proteins and Disease. In: Rudolph, K.L. (eds) Telomeres and Telomerase in Ageing, Disease, and Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73709-4_12

Download citation

Publish with us

Policies and ethics