Skip to main content

Numerical flow calculations

  • Chapter
Centrifugal Pumps
  • 4540 Accesses

Abstract

Real flows are described by partial differential equations which cannot be solved analytically in the general case. By dividing a complex flow domain into a multitude of small cells, these equations can be solved in an approximate manner by numerical methods. Because of their wide range of application, numerical flow calculations (“computational fluid dynamics” or “CFD” for short) have become a special discipline of fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature to chapter 8

  1. Gülich JF: Berechnung von Kreiselpumpen mit Navier-Stokes-Verfahren — aus der Sicht des Anwenders. Forsch Ing Wes 60 (1994) 307–316

    Article  Google Scholar 

  2. Favre JN: Resolution du problème inverse par petites perturbations d’un écoulement potentiél incompressible. Diss. EPF Lausanne (1988)

    Google Scholar 

  3. Göde E: 3-dimensional flow simulation in a pump-turbine. ASME FED 86 (1989) 29–34

    Google Scholar 

  4. Dawes WN: A simulation of the unsteady interaction of a centrifugal impeller with its vaned diffuser: flow analysis. ASME J Turbomach 117 (1995) 213–221

    Google Scholar 

  5. Wu CH: A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial, radial and mixed-flow types. Trans ASME 74 (1952) 1363–1380

    Google Scholar 

  6. Watzelt C et al.: Real-time design of hydraulic machinery bladings on a parallel environment system. ASME FED 227 (1995) 45–51

    Google Scholar 

  7. Casey VM: Computational methods for preliminary design and geometry definition in turbomachinery. Nato AGARD Lecture Series 195 (1994)

    Google Scholar 

  8. Rodi W: Turbulence modelling for incompressible flows. Phys Chem Hydrodyn 7 (1986) 5/6, 297–324

    Google Scholar 

  9. Lakshminarayana B: An assessment of computational fluid dynamic techniques in the analysis of turbomachinery. ASME J Fluids Engng, 113 (1991) 315–352

    Google Scholar 

  10. Schilling R: A critical review of numerical models predicting the flow through hydraulic machinery bladings. 17th IAHR Symp, Beijing, 1994, GL2

    Google Scholar 

  11. Ferziger JH: Review: Simulation of incompressible turbulent flows. J Comp Phys 69 (1987) 1, 1–48

    Article  MATH  MathSciNet  Google Scholar 

  12. Schönung BE: Numerische Strömungsmechanik. Springer, Berlin 1990

    Google Scholar 

  13. Holbein P: Berechnung dreidimensionaler reibungsbehafteter inkompressibler Innenströmungen. Diss. TU Hannover, 1993

    Google Scholar 

  14. Casey VM: The industrial use of CFD in the design of turbomachinery. Nato AGARD Lecture Series 195 (1994)

    Google Scholar 

  15. Graf E et al.: Three-dimensional analysis in a multi-stage pump crossover diffuser. ASME Winter Annual Meeting, 1990, 22–29

    Google Scholar 

  16. Cooper P, Graf E: Computational fluid dynamical analysis of complex internal flows in centrifugal pumps. Proc. 11th Intl Pump Users Symp, Houston, 1994, 83–93

    Google Scholar 

  17. Graf E: Analysis of centrifugal impeller BEP and recirculating flows: comparison of quasi-3D and Navier-Stokes solutions. ASME Pumping Machinery Symp, 1993, 235–245

    Google Scholar 

  18. Howard JHG et al.: Flow analysis in a spiral inducer impeller. ASME Paper 93-GT-227.

    Google Scholar 

  19. Goto A: Study of internal flows in a mixed-flow pump impeller at various tip clearances using 3D viscous flow computations. ASME Paper 90-GT-36

    Google Scholar 

  20. Tanabe S, et al.: Turbulent flow analysis in a pump impeller. ASME Fluid Machinery Forum FED-Vol 119 (1991) 1–6

    Google Scholar 

  21. Combes JF et al.: Numerical and experimental analysis of the flow in a centrifugal pump at nominal and partial flow rate. ASME Paper 92-GT-284

    Google Scholar 

  22. Schachenmann A, Gülich JF: Vergleich von drei Navier-Stokes Berechnungsverfahren mit LDA-Messungen an einem radialen Pumpenlaufrad. Pumpentagung Karlsruhe, 1992, B7

    Google Scholar 

  23. Schachenmann A et al.: Comparison of 3 Navier-Stokes codes with LDA-measurements on an industrial radial pump impeller. ASME Fluids Engineering Conf, Los Angeles, 1992

    Google Scholar 

  24. Ginter F et al.: Entwicklung eines Pumpenzulaufkrümmers mit Hilfe der Strömungsberechnung. Pumpentagung Karlsruhe, 1992, B5

    Google Scholar 

  25. Greim R et al.: Berechnung dreidimensionaler Strömung in Pumpenlaufrädern. Pumpentagung Karlsruhe, 1992, B6

    Google Scholar 

  26. Fraser SM et al.: Improved k-ε-modeling of impeller flow performance of a mixedflow pump under off-design operating states. Proc IMechE 207 (1993) 219–229

    Google Scholar 

  27. Freitas CJ: Perspective: Selected benchmarks from commercial CFD codes. ASME J Fluids Engng 117 (1995) 208–218

    Google Scholar 

  28. Goto A: Numerical and experimental study of 3D flow fields within a diffuser pump stage at off-design condition. ASME FED 227 (1995) 1–9

    Google Scholar 

  29. Cheng-I Yang: A simulation of viscous incompressible flow through a multipleblade-row turbomachinery. ASME FED 227 (1995) 11–18

    Google Scholar 

  30. Staubli T et al.: Verification of computed flow fields in a pump of high specific speed. ASME FED 227 (1995) 75–82

    Google Scholar 

  31. Wei-Chung Chen et al.: CFD as a turbomachinery design tool: code validation. ASME FED 227 (1995) 67–74

    Google Scholar 

  32. Casey VM et al.: Flow analysis in a pump diffuser. Part 2: Validation of a CFD code for steady flow. ASME FED 227 (1995) 135–143

    Google Scholar 

  33. Rodi W: Turbulence models and their application in hydraulics. 3rd ed, Balkema, Rotterdam, 1993

    Google Scholar 

  34. Bartsch P: Numerische Untersuchung der Leitrad-Laufrad-Wechselwirkungen in axialen Kreiselpumpen. Diss. TU Berlin, 1994

    Google Scholar 

  35. Gülich JF, Favre JN, Denus K: An assessment of pump impeller performance predictions by 3D-Navier-Stokes calculations. ASME FEDSM97-3341 (1997)

    Google Scholar 

  36. Song CCS et al.: Simulation of flow through Francis turbine by LES method. IAHR Symp Valencia, 1996, 267–276

    Google Scholar 

  37. Song CCS et al.: Simulation of flow through pump-turbine. IAHR Symp Valencia, 1996

    Google Scholar 

  38. Kamemoto K et al.: Analysis of unsteady characteristics of flows through a centrifugal pump impeller by an advanced vortex method. IAHR Symp Valencia, 1996, 729–738

    Google Scholar 

  39. Hirschi R: Prédiction par modélisation numerique tridimensionelle des effects de la cavitation à poche dans les turbomachines hydrauliques. Diss. EPF Lausanne, 1998

    Google Scholar 

  40. Majidi K: Numerische Berechnung der Sekundärströmung in radialen Kreiselpumpen zur Feststofförderung. Diss. TU Berlin, 1997

    Google Scholar 

  41. Kaps A: Numerische Untersuchung der Strömung in einer radialen Kreiselpumpe mit dem Ziel einer wirkungsgrad-und lagerkraftoptimierten Gehäusegestaltung, Diss. TU Berlin, 1996

    Google Scholar 

  42. Noll B: Numerische Strömungsmechanik. Springer, Berlin, 1993

    MATH  Google Scholar 

  43. Oertel JRH, Laurien E: Numerische Strömungsmechanik. Springer, Berlin, 1995

    MATH  Google Scholar 

  44. Cugal M, Baché G: Performance prediction from shutoff to runout flows for a complete stage of a boiler feedpump using CFD. ASME FEDSM97-3334 (1997)

    Google Scholar 

  45. Schilling R: Stand der numerischen Strömungssimulation bei hydraulischen Turbomaschinen. Festschrift zum Jubiläum 100 Jahre Turbomaschinen und 50 Jahre Fluidantriebstechnik an der TU Darmstadt, 1997

    Google Scholar 

  46. Torbergsen E, White MF: Transient simulation of impeller/diffuser interactions. ASME FEDSM97-3453 (1997)

    Google Scholar 

  47. Combes JF, et al: Numerical investigation of the rotor-stator interaction in a centrifugal pump using a finite element method. ASME FEDSM97-3454 (1997)

    Google Scholar 

  48. Iaccarino G: Predictions of a turbulent separated flow using commercial CFD codes. ASME J Fluids Engng 123 (2001), 819–828

    Article  Google Scholar 

  49. Liu W: Modeling of swirling turbulent flows. Diss. TU Stuttgart, 2001

    Google Scholar 

  50. Roache PJ: Verification and validation in computational science and engineering. Hermosa, Albuquerque, 1998, www.hermosa-pub/hermosa

    Google Scholar 

  51. Coleman HW: Some observations on uncertainties and the verification and validation of simulations. ASME J Fluids Engng 125 (2003) 733–735

    Article  Google Scholar 

  52. Freitas CJ: Journal of Fluids Engineering editorial policy statement on the control of numerical accuracy. ASME J Fluids Engng 115 (1993) 339–340

    Article  Google Scholar 

  53. Stern F et al: Comprehensive approach to verification and validation of CFD calculations-Part 1: Methodology and procedures. ASME J Fluids Engng 123 (2001) 793–802

    Article  Google Scholar 

  54. Oberkampf WL, Trucano TG: Validation methodology in computational fluid dynamics. AIAA paper 2000-2549 (2000)

    Google Scholar 

  55. Oberkampf WL, Trucano TG: Verification and validation in computational fluid dynamics. Sandia National Laboratories report 2002-0529 (2002)

    Google Scholar 

  56. Guide for verification and validation of computational fluid dynamics solutions. AIAA Guide G-077-1998, www.aiaa.org

    Google Scholar 

  57. ERCOFTAC Special interest group on “Quality and trust in industrial CFD”. Best practice guidelines. www.ercoftac.org

    Google Scholar 

  58. Ferzinger JH, Peric M: Computational methods for fluid dynamics. Springer Berlin, 1997

    Google Scholar 

  59. Schäfer M: Numerik im Maschinenbau. Springer Berlin, 1999

    MATH  Google Scholar 

  60. Steinmann A: Numerische und experimentelle Untersuchung der ein-und zweiphasigen Strömung in einem technisch belüfteten Abwasserteich. Diss TU Berlin, 2002

    Google Scholar 

  61. Menter FR: A comparison of some recent eddy-viscosity turbulence models. Transactions ASME 118 (1996) 514–519

    Article  Google Scholar 

  62. Chen CJ, Patel VC: Near-wall turbulence models for complex flows including separation. AIAA J, 26 (1988) 641–648

    Google Scholar 

  63. Durbin PA et al: Rough wall modification of two-layer k-ε. ASME JFE 123 (2001) 16–21

    Article  Google Scholar 

  64. Treutz G: Numerische Simulation der instationären Strömung in einer Kreiselpumpe. Diss TU Darmstadt, 2002

    Google Scholar 

  65. Ginter F, Staubli T: Performance discontinuity of a shrouded centrifugal pump impeller. IMech Conf 1999, pp 1027–49

    Google Scholar 

  66. Muggli F, Holbein P, Dupont P: CFD calculation of a mixed flow pump characteristic from shut-off to maximum flow: ASME FEDSM2001-18072 (2001)

    Google Scholar 

  67. Zangeneh M, Goto A: Turbodesign: next generation design software for pumps. World Pumps, February 2003, 32–36

    Google Scholar 

  68. Mack R, Drtina P, Lang E: Numerical prediction on guide vanes and in labyrinth seal in hydraulic turbines. Wear 233–235 (1999) 685–691

    Article  Google Scholar 

  69. Dupont P, Casartelli E: Numerical prediction of the cavitation in pumps. ASME FEDSM2002-31189

    Google Scholar 

  70. Tremante A et al: Numerical turbulent simulation of the two-phase flow (liquid/gas) through a cascade of an axial pump. ASME FEDSM2001-18086

    Google Scholar 

  71. Staubli T, Bissig M: Numerical parameter study of rotor side spaces. 21st IAHR Symp Hydraulic Machinery and systems, 2002, Lausanne

    Google Scholar 

  72. Visser FC: Some user experience demonstrating the use of CFD for cavitation analysis and head prediction of centrifugal pumps. ASME FEDSM2001-18087

    Google Scholar 

  73. Kubota A, Kato H, Yamaguchi H: Finite difference analysis of unsteady cavitation on a two-dimensional hydrofoil. 5th Intnl Conf Numerical Ship Hydrodynamics, Hiroshima, 1989

    Google Scholar 

  74. Bouziad AY, Farhat M, Guennoun F, Kueny JL, Avellan F: Physical modeling and simulation of leading edge cavitation, application to an industrial inducer. 5th Intl symp on cavitation, Osaka 2003, Cav03-Os-6-014

    Google Scholar 

  75. Bissig M, Staubli T: Numerische Berechnung der Fluid-Rotorinteraktion im Radseitenraum von Hydromaschinen. VDI-Tagung Fluid-Struktur-Wechselwirkung, Heidelberg, 2002

    Google Scholar 

  76. Ginter F: Berechnung der instationären, turbulenten Strömung in hydraulischen Strömungsmaschien. Diss TU Stuttgart, 1997, Mitteilung Nr 12 Inst für Strömungsmechanik und hydraulische Maschinen

    Google Scholar 

  77. Hildebrandt T: Weiterentwicklung von 3D Navier-Stokes-Strömungsrechenverfahren zur Anwendung in hochbelasteten Verdichter-und Turbinengittern. Diss Universität der Bundeswehr, München, 1998

    Google Scholar 

  78. Hansen T: Comparison of Steady-State and Transient Rotor-Stator Interaction of an Industrial Centrifugal Pump. CFX Users conference, 2001

    Google Scholar 

  79. Cebici T: Turbulence models and their application. Springer Berlin, 2004, ISBN 3-540-40288-8

    Google Scholar 

  80. Wilcox DC: Turbulence Modeling for CFD. DCW Industries, La Canada, California, 1998

    Google Scholar 

  81. Kato M, Launder BE: The modeling of turbulent flows around stationary and vibrating square cylinders. 9th Symp on Turbulent shear flows, Kyoto, paper 10-4, 1993

    Google Scholar 

  82. Gugau M: Beitrag zur Validierung der numerischen Berechnung von Kreiselpumpen. Diss. TU Darmstadt, 2004

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Numerical flow calculations. In: Centrifugal Pumps. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73695-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73695-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73694-3

  • Online ISBN: 978-3-540-73695-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics