Skip to main content

Partload operation, impact of 3-D flow phenomena performance

  • Chapter

Abstract

A pump working significantly below the best efficiency flow rate is said to operate at partload. At low specific speeds this can be roughly assumed at q* < 0.8, at high nq below q* < 0.9. Since blade inlet angles and channel cross sections are too large for the reduced flow rate, flow patterns during partload operation fundamentally change compared with the design point. The flow becomes highly 3-dimensional since it separates in the impeller and the collector. Finally, recirculations are observed at impeller inlet and outlet at sufficiently low flow. An easy means to obtain information on the impeller flow are stroboscopic observations of tufts. Flow patterns in a radial impeller of nq = 22 gained in this way are shown in Fig. 5.1 [B.20]. It can be seen that the flow is attached at q* > 0.8 while increasingly large zones with separation and recirculation are observed at a lower flow rates. Similar flow patterns were found on impellers of nq = 26 and 33.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature to chapter 5

  1. Pfleiderer C: Vorausbestimmung der Kennlinien schnellläufiger Kreiselpumpen. VDI, Düsseldorf, 1938

    Google Scholar 

  2. Gülich JF: Bemerkungen zur Kennlinienstabilität von Kreiselpumpen. Pumpentagung Karlsruhe, 1988, B3

    Google Scholar 

  3. Dobener E: Über den Strömungswiderstand in einem rotierenden Kanal. Diss. TH Darmstadt, 1959

    Google Scholar 

  4. Moore J: A wake and an eddy in a rotating radial flow passage. ASME J Engng for Power. 95 (1973) 205–219

    Google Scholar 

  5. Lakshminarayana B: Fluid dynamics of inducers-a review. ASME J Fluids Engng 104 (1982) 411–427

    Google Scholar 

  6. Tanaka T: An Experimental study of backflow phenomena in a high specific speed impeller pump. ASME Paper 80-FE-6

    Google Scholar 

  7. Fraser WH: Recirculation in centrifugal pumps. ASME Winter Annual Meeting, Washington DC, 1981, 65–86

    Google Scholar 

  8. Sen M, Breugelmans F: Reverse flow, prerotation and unsteady flow in centrifugal pumps. NEL Fluid Mechanics Silver Jubilee Conf, Glasgow, Nov. 1979

    Google Scholar 

  9. Schiavello B, Sen M: On the prediction of the reverse flow onset at the centrifugal pump inlet. ASME 22nd Annual Fluids Engineering Conf, New Orleans, March 1980, Performance Prediction of Centrifugal Pumps and Compressors

    Google Scholar 

  10. Stoffel B: Experimentelle Untersuchungen zur räumlichen und zeitlichen Struktur der Teillast-Rezirkulation bei Kreiselpumpen. Forsch Ing Wes 55 (1989) 149–152

    Article  Google Scholar 

  11. Stoffel B, Hergt P: Zur Problematik der spezifischen Saugzahl als Beurteilungsmaßstab für die Betriebssicherheit einer Kreiselpumpe. Pumpentagung Karlsruhe, 1988, B8

    Google Scholar 

  12. Agrawal DP et al.: Effect of inlet velocity distribution on the vaned radial diffuser performance. ASME Fluid Machinery Forum, Portland, 1991, 71–75

    Google Scholar 

  13. Hergt P, Jaberg H: Die Abströmung von Radiallaufrädern bei Teillast und ihr Zusammenhang mit der Volllastinstabilität. KSB Techn Ber 26 (1990), 29–38

    Google Scholar 

  14. Hergt P, Starke J: Flow patterns causing instabilities in the performance curves of centrifugal pumps with vaned diffusers. 2th Intl Pump Symp, Houston, 1985, 67–75

    Google Scholar 

  15. Gülich JF et al.: Influence of flow between impeller and casing on partload performance of centrifugal pumps. ASME FED 81 (1989), 227–235

    Google Scholar 

  16. Stachnik P: Experimentelle Untersuchungen zur Rezirkulation am Ein-und Austritt eines radialen Kreiselpumpenlaufrades im Teillastbetrieb. Diss. TH Darmstadt, 1991

    Google Scholar 

  17. Gülich JF et al.: Rotor dynamic and thermal deformation tests of high-speed boiler feedpumps. EPRI Report GS-7405, July 1991

    Google Scholar 

  18. Toyokura T: Studies on the characteristics of axial-flow pumps. Bull JSME 4 (1961) 14, 287–293

    Google Scholar 

  19. Ubaldi M, Zunino P: Experimental investigation of the stalled flow in a centrifugal pump-turbine with vaned diffuser. ASME Paper 90-GT-216, 1990

    Google Scholar 

  20. Carey C et al.: Studies of the flow of air in a rotor model mixed-flow pump by Laser/Doppler anemometry. NEL-Reports 698 (1985), 699 (1985), 707 (1987)

    Google Scholar 

  21. Goto A: Study of internal flows in a mixed-flow pump impeller at various tip clearances using 3D viscous flow computations. ASME Paper 90-GT-36, 1990

    Google Scholar 

  22. Goto A: The Effect of tip leakage flow on partload performance of a mixed-flow pump impeller. ASME Paper 91-GT-84, 1991

    Google Scholar 

  23. Canavelis R, Lapray JF: Effect of suction duct design on the performance of mixed flow pump. IMechE Paper, C333/88, 1988

    Google Scholar 

  24. Hergt P: Ergebnisse von experimentellen Untersuchungen des Förderverhaltens eines Inducers. Pumpentagung Karlsruhe, 1992, B 5–01

    Google Scholar 

  25. Martin R et al.: Partload operation of the boiler feedpumps for the new French PWR 1400 MW nuclear plants. ImechE Paper C344/88, 1988

    Google Scholar 

  26. Gülich JF: Influence of interaction of different components on hydraulic pump performance and cavitation. Proc. Symp Power Plant Pumps, New Orleans, 1987, EPRI CS-5857 (1988), 2.75–2.96

    Google Scholar 

  27. Inoue M, Cumpsty NA: Experimental study of centrifugal impeller discharge flow in vaneless and vaned diffusers. ASME J Engng Gas Turb Power 106 (1984) 455–467

    Article  Google Scholar 

  28. Eckardt D: Flow field analysis of radial and backswept centrifugal compressor impellers. 25th Intl Gas Turbine Conf ASME, New Orleans, 1980, 77–86

    Google Scholar 

  29. Eckardt D: Detailed flow investigations within a high-speed centrifugal compressor impeller. ASME J Fluids Engng 98 (1976) 390–402

    Google Scholar 

  30. Stepanik H, Brekke H: Off-design behavior of two pump-turbine model impellers. 3rd Intl Symp on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, 1990, 477–492

    Google Scholar 

  31. Hergt P, Prager S: Influence of different parameters on the disc friction losses of a centrifugal pump. Conf on Hydraulic Machinery, Budapest, 1991, 172–179

    Google Scholar 

  32. Cooper P et al.: Minimum continuous stable flow in centrifugal pumps. Proc. Symp Power Plant Pumps, New Orleans, 1987, EPRI CS-5857 (1988)

    Google Scholar 

  33. Hunziker E: Einfluß der Diffusorgeometrie auf die Instabilitätsgrenze eines Radialverdichters. Diss. ETH Zürich, 1993

    Google Scholar 

  34. Wesche W: Experimentelle Untersuchungen am Leitrad einer radialen Kreiselpumpe. Diss. TU Braunschweig, 1989

    Google Scholar 

  35. Yoshinaga Y et al.: Study of performance improvement for high specific speed centrifugal compressors by using diffusers with half guide vanes. ASME J Fluids Engng 109 (1987) 259–367

    Google Scholar 

  36. Stoffel B, Weiß K: Experimental investigations on part load flow phenomena in centrifugal pumps. World Pumps (1994) Oct, 46–50

    Google Scholar 

  37. Kaupert KA: Unsteady flow fields in a high specific speed centrifugal impeller. Diss. ETH Zürich, 1997

    Google Scholar 

  38. Weiß K: Experimentelle Untersuchungen zur Teillastströmung bei Kreiselpumpen. Diss. TH Darmstadt, 1995

    Google Scholar 

  39. Stoffel B, Weiß K: Different types and locations of partload recirculations in centrifugal pumps found from LDV measurements. IAHR Symp Valencia, 1996

    Google Scholar 

  40. Gülich JF: Untersuchungen zur sattelförmigen Kennlinien-Instabilität von Kreiselpumpen. Forsch Ing Wes 61 (1995) H4, 93–105

    Article  Google Scholar 

  41. Hergt P et al.: Fluid dynamics of slurry pump impellers. 8th Intl Conf Transport and Sedimentation of Solids, Prague 1995, D2–1.

    Google Scholar 

  42. Saathoff H: Rotor-Spaltströmungen in Axialverdichtern. Diss TU Branuschweig, ZLR-Forschungsbericht 2001–05, 2001

    Google Scholar 

  43. Dobat A, Saathoff H, Wulff D: Experimentelle Untersuchungen zur Entstehung von rotating stall in Axialventilatoren. VDI-Bericht 1591, 2001, 345–360

    Google Scholar 

  44. Saathoff H, Stark U: Tip clearance flow in a low-speed compressor and cascade. 4th European Conf on turbomachinery, Florenz 2001,81–91

    Google Scholar 

  45. Rohkamm H, Wulff D, Kosyna G, Saathoff H, Stark U, Gümmer V, Swoboda M, Goller M: The impact of rotor tip sweep on the three-dimensional flow in a highly-loaded single-stage low-speed axial compressor: Part II — Test facility and experimental results. 5th European Conf on Turbomachinery — Fluid Dynamics and Thermodynamics, Prag, 2003, 175–185

    Google Scholar 

  46. Saathoff H, Deppe A, Stark U, Rohdenburg M, Rohkamm H, Wulff D, Kosyna G: Steady and unsteady casing wall flow phenomena in a single-stage compressor at partload conditions. Intl J of Rotating Machinery, 9 (2003), 327–335

    Google Scholar 

  47. Bross S, Brodersen S, Saathoff H, Stark U: Experimental and theoretical investigation of the tip clearance flow in an axial flow pump. 2nd European conf on turbomachinery, Antwerpen 1997, 357–364

    Google Scholar 

  48. Goltz I, Kosyna G, Stark U, Saathoff H, Bross S: Stall inception phenomena in a single-stage axial pump. 5th European conf on turbomachinery, Prag 2003

    Google Scholar 

  49. Friedrichs J, et al: Effect of stator design on stator boundary layer flow in a highly loaded single-stage axial-flow low-speed compressor. ASME J of turbomachinery, 123 (2001) 483–489

    Article  Google Scholar 

  50. Gülich JF: Impact of 3D-Flow Phenomena on the Design of rotodynamic Pumps. IMechE 213 (1999) C1, 59–70

    Google Scholar 

  51. Goltz I: Entstehung und Unterdrückung der Kennlinieninstabilität einer Axialpumpe. Diss TU Braunschweig, Mitt des Pfleiderer-Instituts für Strömungsmaschinen, Heft 10. Verlag Faragallah, 2006

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Partload operation, impact of 3-D flow phenomena performance. In: Centrifugal Pumps. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73695-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73695-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73694-3

  • Online ISBN: 978-3-540-73695-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics