Skip to main content

Operation of centrifugal pumps

  • Chapter
Centrifugal Pumps
  • 4675 Accesses

Abstract

A positive displacement pump delivers at a fixed speed a nearly constant flow rate independently of the back pressure. In contrast, the flow rate of a centrifugal pump depends on the pressure difference Δp =ρ×g×HA imposed by the system on the pump. The pressure rise Δp generally depends on the flow rate because of hydraulic losses. Thus the system characteristic HA = f(Q) is understood as the difference in total pressure which must be supplied by the pump to maintain a specific flow rate through the system, Eq. (T 2.2.6). The operation point of a centrifugal pump is given by the intersection of the characteristics of system and pump, Fig. 11.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature to chapter 11

  1. Saalfeld K: Vergleichende Darstellung der Regelung von Pumpen durch Vordrall und durch Laufschaufelverstellung. KSB Techn Ber 7 (1963) 22–31

    Google Scholar 

  2. Fickelscher K: Theoretischer Vergleich der Verstellpropeller-und der Drallregelung bei Kühlwasserpumpen. VDI-Z 108 (1966) 785–789

    Google Scholar 

  3. Radke M: Strömungstechnische Untersuchung des Einflusses von Vorleiträdern variabler Geometrie auf das Betriebsverhalten axialer Kreiselpumpen. Fortschrittber VDI Reihe 7, 210 (1992)

    Google Scholar 

  4. Greitzer EM: The stability of pumping systems. ASME J Fluids Engng 103 (1981) 193–242

    Article  Google Scholar 

  5. Prosser JM: The hydraulic design of pump sumps and intakes. BHRA, Bedford / CIRIA, London, 1977

    Google Scholar 

  6. Chaudhry MH: Applied Hydraulic Transients. 2nd ed, Van Nostrand Reinhold, New York, 1987

    Google Scholar 

  7. Jaeger C: Fluid Transients. Blackie, Glasgow, 1977

    Google Scholar 

  8. Barrand JP, Picavet A:. Qualitative flow visualizations during fast start-up of centrifugal pumps. IAHR Symp Valencia, 1996, 671–680

    Google Scholar 

  9. Strub RA: Abfall des Saugdruckes von Speisewasserpumpen bei starken Lastschwankungen. Techn Rundschau Sulzer (1960) 3, 41–44

    Google Scholar 

  10. Stoll A: Speisewasserentgasung beim gleitendem Druck. Siemens Z 36 (1962) 8, 608–618

    Google Scholar 

  11. De Vries M, Simon A: Suctions effects on feedpump performance; a Literaturee survey. EPRI Report CS-4204, Aug. 1985

    Google Scholar 

  12. IMechE Conference on Centrifugal pump low-flow protection, 1991

    Google Scholar 

  13. Tillak P, Hellmann DH, Rüth A: Description of surface vortices with regard to common design criteria of intake chambers. 2nd Intnl Conf on Pumps and Fans, Beijing 1995, 863–874

    Google Scholar 

  14. Rosenberger H: Experimental determination of the rotor impacts of axial pumps in intake structures under distorted approach flow. Thesis TU Kaiserslautern, 2001. SAM Forschungsbericht Bd 5

    Google Scholar 

  15. Knauss J (Hrsg): Swirling flow problems at intakes. IAHR Hydraulic Structures Design Manual, AA Balkema, Rotterdam 1987 ISBN 90 6191 643 7.

    Google Scholar 

  16. Knauss J: Wirbelbildung in Einlaufbauwerken — Luft-und Dralleintrag. DVWK Schrift 63, Paul Parey, 1983, ISBN 3-490-06397-X

    Google Scholar 

  17. Chang KS, Lee DJ: Experimental investigation of the air entrainment in the shutdown cooling system during mid-loop operation. Ann Nucl Energy 22 (1995) 9, 611–619

    Article  Google Scholar 

  18. Melville BW, Ettema R, Nakato T: Review of flow problems at water intake sumps. Iowa Institute of Hydraulic Research, University of Iowa. EPRI Report RP-3456-01, 1994

    Google Scholar 

  19. Paterson IS, Adam BR: Installation effects on wet pump performance. IMechE C180/77, 63–68, 1977

    Google Scholar 

  20. Nakat T, et al: Field-tested solutions to pump vibrations. SHF Symp 1993, 435–442

    Google Scholar 

  21. Weinerth J, Rosenberger H, Hellmann DH, Hausen W: Optimierung der Betriebsbedingungen von Wassertransportpumpen mit Hilfe von Modellversuchen. Pump Users Intl Forum Karlsruhe, 2000

    Google Scholar 

  22. Bross S: Entwicklung neuer Schaufelgitter aus Profilen variabler Geometrie zum Einsatz in Leiträdern drallgeregelter Turbomaschinen. Diss TU Braunschweig, ZLR-Forschungsbericht 93-10, 1993

    Google Scholar 

  23. Weinerth J:. Kennlinienverhalten und Rotorbelastung von axialen Kühlwasserpumpen unter Betriebsbedingungen. Diss TU Kaiserslautern, 2004. SAM Forschungsbericht Bd 9

    Google Scholar 

  24. Thorley ARD: Fluid transients in pipeline systems. 2nd ed John Wiley, 2004

    Google Scholar 

  25. Jarius M: Untersuchung einer Axialgitterschaufel mit Höchstumlenkung durch Struktur-und niederfrequente Wölbungsvariation. Diss. TU Berlin, 2000

    Google Scholar 

  26. Dues M: Experimentelle Untersuchung der Interferenz zwischen Leitrad und Laufrad einer axialen Kreiselpumpenstufe. Diss. TU Berlin, 1994

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Operation of centrifugal pumps. In: Centrifugal Pumps. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73695-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73695-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73694-3

  • Online ISBN: 978-3-540-73695-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics