Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4604))

Included in the following conference series:

Abstract

We introduce a simple but efficient, multistage algorithm for constructing concept lattices (MCA). A concept lattice can be obtained as the closure system generated from attribute concepts (dually, object concepts). There are two strategies to use this as the basis of an algorithm: (a) forming intersections by joining one attribute concept at a time, and (b) repeatedly forming pairwise intersections starting from the attribute concepts. A straightforward translation of (b) to an algorithm suggests that pairwise intersection be performed among all cumulated concepts. MCA is parsimonious in forming the pairwise intersections: it only performs such operations among the newly formed concepts from the previous stage, instead of cumulatively. We show that this parsimonious multistage strategy is complete: it generates all concepts. To make this strategy really work, one must overcome the need to eliminate duplicates (and potentially save time even further), since concepts generated at a later stage may have already appeared in one of the earlier stages. As considered in several other algorithms in the literature [5], we achieve this by an auxiliary search tree which keeps all existing concepts as paths from the root to a flagged node or a leaf. The depth of the search tree is bounded by the total number of attributes, and hence the time complexity for concept lookup is bounded by the logarithm of the total number of concepts. For constructing lattice diagrams, we adapt a sub-quadratic algorithm of Pritchard [9] for computing subset partial orders to constructing the Hasse diagrams. Instead of the standard expected quadratic complexity, the Pritchard approach achieves a worst-case time O(N 2 / log N). Our experimental results showed significant improvements in speed for a variety of input profiles against three leading algorithms considered in the comprehensive comparative study [5]: Bordat, Chein, and Norris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bordat, J.P.: Calcul pratique du treillis de Galois d’une correspondance. Math. Sci. Hum. 96, 31–47 (1986)

    MATH  MathSciNet  Google Scholar 

  2. Chein, M.: Algorithme de recherche des sous-matrices premieres d’une matrice. Bull. Math. Soc. Sci. Math. R.S. Roumanie 13, 21–25 (1969)

    MathSciNet  Google Scholar 

  3. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  4. http://www.graphviz.org/

  5. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2-3), 189–216 (2002)

    Article  MATH  Google Scholar 

  6. Lindig, C.: Fast Concept Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, Springer, Heidelberg (2000)

    Google Scholar 

  7. van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: A new incremental algorithm for constructing concept lattices. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004)

    Google Scholar 

  8. Norris, E.M.: An algorithm for computing the maximal rectangles in a binary relation. Rev. Roumaine Math. Pures et Appl. 23(2), 243–250 (1978)

    MATH  MathSciNet  Google Scholar 

  9. Pritchard, P.: On computing the subset graph of a collection of sets. J. Algorithms 33(2), 187–203 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pritchard, P.: A fast bit-parallel algorithm for computing the subset partial order. Algorithmica 24(1), 76–86 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Valtchev, P., Missaoui, R., Godin, R., Meridji, M.: Generating frequent itemsets incrementally: two novel approaches based on Galois lattice theory. Journal of Experimental & Theoretical Artificial Intelligence 14(2/3), 115–142 (2002)

    Article  MATH  Google Scholar 

  12. Valtchev, P., Missaoui, R., Lebrun, P.: A fast algorithm for building the Hasse diagram of a Galois lattice. In: dans Actes du Colloque LaCIM 2000, pp. 293–306, Montreal (2000)

    Google Scholar 

  13. Yevtushenko, S.: ConExp. http://sourceforge.net/projects/conexp

  14. Zhang, G.-Q.: Chu spaces, formal concepts, and domains. Electronic Notes in Computer Science 83, 16 (2003)

    Google Scholar 

  15. Zhang, G.-Q., Shen, G.: Approximable Concepts, Chu spaces, and information systems. In: De Paiva, V., Pratt, V. (eds.) Theory and Applications of Categoiries, Special Volume on Chu Spaces: Theory and Applications, vol. 17(5), pp. 80–102 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Uta Priss Simon Polovina Richard Hill

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Troy, A.D., Zhang, GQ., Tian, Y. (2007). Faster Concept Analysis. In: Priss, U., Polovina, S., Hill, R. (eds) Conceptual Structures: Knowledge Architectures for Smart Applications. ICCS 2007. Lecture Notes in Computer Science(), vol 4604. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73681-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73681-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73680-6

  • Online ISBN: 978-3-540-73681-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics