Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 318))

Remyelination is the regenerative process by which demyelinated axons are reinvested with new myelin sheaths. It is associated with functional recovery and maintenance of axonal health. It occurs as a spontaneous regenerative response following demyelination in a range of pathologies including traumatic injury as well as primary demyelinating disease such as multiple sclerosis (MS). Experimental models of demyelination based on the use of toxins, while not attempting to accurately mimic a disease with complex etiology and pathogenesis such as MS, have nevertheless proven extremely useful for studying the biology of remyelination. In this chapter, we review the main toxin models of demyelination, drawing attention to their differences and how they can be used to study different aspects of remyelination. We also describe the optimal use of these models, highlighting potential pitfalls in interpretation, and how remyelination can be unequivocally recognized. Finally, we discuss the role of toxin models alongside viral and immune-mediated models of demyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamo AM, Paez PM, Escobar Cabrera OE, Wolfson M, Franco PG, Pasquini JM, Soto EF (2006) Remyelination after cuprizone-induced demyelination in the rat is stimulated by apotransferrin. Exp Neurol 198:519-529

    Article  PubMed  CAS  Google Scholar 

  2. Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD (2001) Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 167:27-39

    Article  PubMed  CAS  Google Scholar 

  3. Akiyama Y, Radtke C, Honmou O, Kocsis JD (2002) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229-236

    Article  PubMed  Google Scholar 

  4. Akiyama Y, Radtke C, Kocsis JD (2002) Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells. J Neurosci 22:6623-6630

    PubMed  CAS  Google Scholar 

  5. Arnett HA, Fancy SP, Alberta JA, Zhao C, Plant SR, Kaing S, Raine CS, Rowitch DH, Franklin RJ, Stiles CD (2004) Bhlh transcription factor olig1 is required to repair demyelinated lesions in the CNS. Science 306:2111-2115

    Article  PubMed  CAS  Google Scholar 

  6. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP (2001) TNF-alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4:1116-1122

    Article  PubMed  CAS  Google Scholar 

  7. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion. Ann Neurol 55:458-468

    Article  PubMed  Google Scholar 

  8. Blakemore WF (1972) Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J Neurocytol 1:413-426

    Article  PubMed  CAS  Google Scholar 

  9. Blakemore WF (1973) Demyelination of the superior cerebellar peduncle in the mouse induced by cuprizone. J Neurol Sci 20:63-72

    Article  PubMed  CAS  Google Scholar 

  10. Blakemore WF (1973) Remyelination of the superior cerebellar peduncle in the mouse following demyelination induced by feeding cuprizone. J Neurol Sci 20:73-83

    Article  PubMed  CAS  Google Scholar 

  11. Blakemore WF (1974) Pattern of remyelination in the CNS. Nature 249:577-578

    Article  PubMed  CAS  Google Scholar 

  12. Blakemore WF (1974) Remyelination of the superior cerebellar peduncle in old mice following demyelination induced by cuprizone. J Neurol Sci 22:121-126

    Article  PubMed  CAS  Google Scholar 

  13. Blakemore WF (1978) Observations on remyelination in the rabbit spinal cord following demyelination induced by lysolecithin. Neuropathol Appl Neurobiol 4:47-59

    Article  PubMed  CAS  Google Scholar 

  14. Blakemore WF (1981) Observations on myelination and remyelination in central nervous system. In: Development in the nervous system. Gerrod DR, Feldman JD (eds) Cambridge University Press, Cambridge, pp 289-308.

    Google Scholar 

  15. Blakemore WF (1982) Ethidium bromide induced demyelination in the spinal cord of the cat. Neuropathol Appl Neurobiol 8:365-375

    Article  PubMed  CAS  Google Scholar 

  16. Blakemore WF (2005) The case for a central nervous system (CNS) origin for the Schwann cells that remyelinate CNS axons following concurrent loss of oligodendrocytes and astrocytes. Neuropathol Appl Neurobiol 31:1-10

    Article  PubMed  CAS  Google Scholar 

  17. Blakemore WF, Chari DM, Gilson JM, Crang AJ (2002) Modelling large areas of demyelination in the rat reveals the potential and possible limitations of transplanted glial cells for remyelination in the CNS. Glia 38:155-168

    Article  PubMed  CAS  Google Scholar 

  18. Blakemore WF, Crang AJ, Franklin RJ, Tang K, Ryder S (1995) Glial cell transplants that are subsequently rejected can be used to influence regeneration of glial cell environments in the CNS. Glia 13:79-91

    Article  PubMed  CAS  Google Scholar 

  19. Blakemore WF, Gilson JM, Crang AJ (2000) Transplanted glial cells migrate over a greater distance and remyelinate demyelinated lesions more rapidly than endogenous remyelinating cells. J Neurosci Res 61:288-294

    Article  PubMed  CAS  Google Scholar 

  20. Blakemore WF, Gilson JM, Crang AJ (2003) The presence of astrocytes in areas of demyelination influences remyelination following transplantation of oligodendrocyte progenitors. Exp Neurol 184:955-963

    Article  PubMed  Google Scholar 

  21. Blakemore WF, Patterson RC (1978) Suppression of remyelination in the CNS by x-irradiation. Acta Neuropathol (Berl) 42:105-113

    Article  CAS  Google Scholar 

  22. Brockschnieder D, Lappe-Siefke C, Goebbels S, Boesl MR, Nave KA, Riethmacher D (2004) Cell depletion due to diphtheria toxin fragment a after Cre-mediated recombination. Mol Cell Biol 24:7636-7642

    Article  PubMed  CAS  Google Scholar 

  23. Bunge MB, Bunge RP, Ris H (1961) Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Biophys Biochem Cytol 10:67-94

    Article  PubMed  CAS  Google Scholar 

  24. Butzkueven H, Zhang JG, Soilu-Hanninen M, Hochrein H, Chionh F, Shipham KA, Emery B, Turnley AM, Petratos S, Ernst M, Bartlett PF, Kilpatrick TJ (2002) Lif receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med 8:613-619

    Article  PubMed  CAS  Google Scholar 

  25. Carroll WM, Jennings AR, Ironside LJ (1998) Identification of the adult resting progenitor cell by autoradiographic tracking of oligodendrocyte precursors in experimental CNS demyelination. Brain 121:293-302

    Article  PubMed  Google Scholar 

  26. Chandran S, Compston A, Jauniaux E, Gilson J, Blakemore W, Svendsen C (2004) Differential generation of oligodendrocytes from human and rodent embryonic spinal cord neural precursors. Glia 47:314-324

    Article  PubMed  Google Scholar 

  27. Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD (2000) Ng2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci 20:6404-6412

    PubMed  CAS  Google Scholar 

  28. Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346:165-173

    Article  PubMed  Google Scholar 

  29. Chari DM, Blakemore WF (2002) New insights into remyelination failure in multiple sclerosis: Implications for glial cell transplantation. Mult Scler 8:271-277

    Article  PubMed  CAS  Google Scholar 

  30. Chari DM, Crang AJ, Blakemore WF (2003) Decline in rate of colonization of oligodendrocyte progenitor cell (OPC)-depleted tissue by adult OPCs with age. J Neuropathol Exp Neurol 62:908-916

    PubMed  CAS  Google Scholar 

  31. Chari DM, Zhao C, Kotter MR, Blakemore WF, Franklin RJM (2006) Corticosteroids delay remyelination of experimental demyelination in the rodent central nervous system. J Neurosci Res 83:594-605

    Article  PubMed  CAS  Google Scholar 

  32. Crang AJ, Gilson J, Blakemore WF (1998) The demonstration by transplantation of the very restricted remyelinating potential of post-mitotic oligodendrocytes. J Neurocytol 27:541-553

    Article  PubMed  CAS  Google Scholar 

  33. Crang AJ, Gilson JM, Li WW, Blakemore WF (2004) The remyelinating potential and in vitro differentiation of MOG-expressing oligodendrocyte precursors isolated from the adult rat CNS. Eur J Neurosci 20:1445-1460

    Article  PubMed  CAS  Google Scholar 

  34. Dubois-Dalcq M, Ffrench-Constant C, Franklin RJ (2005) Enhancing central nervous system remyelination in multiple sclerosis. Neuron 48:9-12

    Article  PubMed  CAS  Google Scholar 

  35. Felts PA, Smith KJ (1992) Conduction properties of central nerve fibers remyelinated by Schwann cells. Brain Res 574:178-192

    Article  PubMed  CAS  Google Scholar 

  36. Foote AK, Blakemore WF (2005) Inflammation stimulates remyelination in areas of chronic demyelination. Brain 128:528-539

    Article  PubMed  CAS  Google Scholar 

  37. Franklin RJM, Blakemore WF (1993) Requirements for Schwann cell migration within CNS environments: A viewpoint. Int J Dev Neurosci 11:641-649

    Article  PubMed  CAS  Google Scholar 

  38. Franklin RJM, Goldman JE (2004) Remyelination by endogenous cells. In: Lazzarini RA (ed) Myelin biology and disorders. Elsevier, San Diego, 173-196

    Chapter  Google Scholar 

  39. Ghasemlou N, Jeong SY, Lacroix S, David S (2007) T cells contribute to lysophosphatidylcholine-induced macrophage activation and demyelination in the CNS. Glia 55:294-302

    Article  PubMed  Google Scholar 

  40. Gilson JM, Blakemore WF (2002) Schwann cell remyelination is not replaced by oligodendrocyte remyelination following ethidium bromide induced demyelination. Neuroreport 13:1205-1208

    Article  PubMed  CAS  Google Scholar 

  41. Gledhill RF, McDonald WI (1977) Morphological characteristics of central demyelination and remyelination: A single-fiber study. Ann Neurol 1:552-560

    Article  PubMed  CAS  Google Scholar 

  42. Gout O, Gansmuller A, Baumann N, Gumpel M (1988) Remyelination by transplanted oligodendrocytes of a demyelinated lesion in the spinal cord of the adult shiverer mouse. Neurosci Lett 87:195-199

    Article  PubMed  CAS  Google Scholar 

  43. Graca DL, Blakemore WF (1986) Delayed remyelination in rat spinal cord following ethidium bromide injection. Neuropathol Appl Neurobiol 12:593-605

    Article  PubMed  CAS  Google Scholar 

  44. Grinspan JB, Edell E, Carpio DF, Beesley JS, Lavy L, Pleasure D, Golden JA (2000) Stagespecific effects of bone morphogenetic proteins on the oligodendrocyte lineage. J Neurobiol 43:1-17

    Article  PubMed  CAS  Google Scholar 

  45. Hall SM (1972) The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord. J Cell Sci 10:535-546

    PubMed  CAS  Google Scholar 

  46. Hinks GL, Chari DM, O’Leary MT, Zhao C, Keirstead HS, Blakemore WF, Franklin RJM (2001) Depletion of endogenous oligodendrocyte progenitors rather than increased availability of survival factors is a likely explanation for enhanced survival of transplanted oligodendrocyte progenitors in x-irradiated compared to normal CNS. Neuropathol Appl Neurobiol 27:59-67

    Article  PubMed  CAS  Google Scholar 

  47. Hinks GL, Franklin RJM (2000) Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol Cell Neurosci 16:542-556

    Article  PubMed  CAS  Google Scholar 

  48. Ibanez C, Shields SA, El-Etr M, Baulieu EE, Schumacher M, Franklin RJ (2004) Systemic progesterone administration results in a partial reversal of the age-associated decline in CNS remyelination following toxin-induced demyelination in male rats. Neuropathol Appl Neurobiol 30:80-89

    Article  PubMed  CAS  Google Scholar 

  49. Irvine KA, Blakemore WF (2006) Age increases axon loss associated with primary demyelination in cuprizone-induced demyelination in c57bl/6 mice. J Neuroimmunol 175:69-76

    Article  PubMed  CAS  Google Scholar 

  50. Jasmin L, Janni G, Moallem TM, Lappi DA, Ohara PT (2000) Schwann cells are removed from the spinal cord after effecting recovery from paraplegia. J Neurosci 20:9215-9223

    PubMed  CAS  Google Scholar 

  51. Jeffery ND, Blakemore WF (1997) Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 120:27-37

    Article  PubMed  Google Scholar 

  52. Jeffery ND, Crang AJ, O’Leary MT, Hodge SJ, Blakemore WF (1999) Behavioural consequences of oligodendrocyte progenitor cell transplantation into experimental demyelinating lesions in the rat spinal cord. Eur J Neurosci 11:1508-1514

    Article  PubMed  CAS  Google Scholar 

  53. Jennings AR, Kirilak Y, Carroll WM (2002) In situ characterisation of oligodendrocyte progenitor cells in adult mammalian optic nerve. J Neurocytol 31:27-39

    Article  PubMed  CAS  Google Scholar 

  54. Johnson ES, Ludwin SK (1981) The demonstration of recurrent demyelination and remyelination of axons in the central nervous system. Acta Neuropathol (Berl) 53:93-98

    Article  CAS  Google Scholar 

  55. Keirstead HS, Ben-Hur T, Rogister B, O’Leary MT, Dubois-Dalcq M, Blakemore WF (1999) Polysialylated neural cell adhesion molecule-positive CNS precursors generate both oligodendrocytes and Schwann cells to remyelinate the CNS after transplantation. J Neurosci 19:7529-7536

    PubMed  CAS  Google Scholar 

  56. Keirstead HS, Blakemore WF (1997) Identification of post-mitotic oligodendrocytes incapable of remyelination within the demyelinated adult spinal cord. J Neuropathol Exp Neurol 56:1191-1201

    Article  PubMed  CAS  Google Scholar 

  57. Kerschensteiner M, Stadelmann C, Buddeberg BS, Merkler D, Bareyre FM, Anthony DC, Linington C, Bruck W, Schwab ME (2004) Targeting experimental autoimmune encephalomyelitis lesions to a predetermined axonal tract system allows for refined behavioral testing in an animal model of multiple sclerosis. Am J Pathol 164:1455-1469

    PubMed  Google Scholar 

  58. Kotter MR, Li WW, Zhao C, Franklin RJ (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328-332

    Article  PubMed  CAS  Google Scholar 

  59. Kotter MR, Setzu A, Sim FJ, Van Rooijen N, Franklin RJM (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35:204-212

    Article  PubMed  CAS  Google Scholar 

  60. Kotter MR, Zhao C, van Rooijen N, Franklin RJM (2005) Macrophage-depletion induced impairment of experimental cns remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 18:166-175

    Article  PubMed  CAS  Google Scholar 

  61. Lachapelle F, Bachelin C, Moissonnier P, Nait-Oumesmar B, Hidalgo A, Fontaine D, Baron-Van Evercooren A (2005) Failure of remyelination in the nonhuman primate optic nerve. Brain Pathol 15:198-207

    Article  PubMed  Google Scholar 

  62. Le Blanc K, Ringden O (2006) Mesenchymal stem cells: Properties and role in clinical bone marrow transplantation. Curr Opin Immunol 18:586-591

    Article  PubMed  CAS  Google Scholar 

  63. Li WW, Penderis J, Zhao C, Schumacher M, Franklin RJM (2006) Females remyelinate more efficiently than males following demyelination in the aged but not young adult CNS. Exp Neurol 202:250-254

    Article  PubMed  CAS  Google Scholar 

  64. Li WW, Setzu A, Zhao C, Franklin RJM (2005) Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a nonimmune model of demyelination. J Neuroimmunol 158:58-66

    Article  PubMed  CAS  Google Scholar 

  65. Ludwin SK (1978) Central nervous system demyelination and remyelination in the mouse: An ultrastructural study of cuprizone toxicity. Lab Invest 39:597-612

    PubMed  CAS  Google Scholar 

  66. Ludwin SK (1979) An autoradiographic study of cellular proliferation in remyelination of the central nervous system. Am J Pathol 95:683-696

    PubMed  CAS  Google Scholar 

  67. Ludwin SK (1980) Chronic demyelination inhibits remyelination in the central nervous system. An analysis of contributing factors. Lab Invest 43:382-387

    PubMed  CAS  Google Scholar 

  68. Ludwin SK, Johnson ES (1981) Evidence for a “dying-back” gliopathy in demyelinating disease. Ann Neurol 9:301-305

    Article  PubMed  CAS  Google Scholar 

  69. Ludwin SK, Sternberger NH (1984) An immunohistochemical study of myelin proteins during remyelination in the central nervous system. Acta Neuropathol (Berl) 63:240-248

    Article  CAS  Google Scholar 

  70. Mason JL, Suzuki K, Chaplin DD, Matsushima GK (2001) Interleukin-1beta promotes repair of the CNS. J Neurosci 21:7046-7052

    PubMed  CAS  Google Scholar 

  71. Mason JL, Toews A, Hostettler JD, Morell P, Suzuki K, Goldman JE, Matsushima GK (2004) Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. Am J Pathol 164:1673-1682

    PubMed  Google Scholar 

  72. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107-116

    PubMed  CAS  Google Scholar 

  73. McKay JS, Blakemore WF, Franklin RJM (1998) Trapidil-mediated inhibition of CNS remyelination results from reduced numbers and impaired differentiation of oligodendrocytes. Neuropathol Appl Neurobiol 24:498-506

    Article  PubMed  CAS  Google Scholar 

  74. Morell P, Barrett CV, Mason JL, Toews AD, Hostettler JD, Knapp GW, Matsushima GK (1998) Gene expression in brain during cuprizone-induced demyelination and remyelination. Mol Cell Neurosci 12:220-227

    Article  PubMed  CAS  Google Scholar 

  75. Mujtaba T, Mayer-Proschel M, Rao MS (1998) A common neural progenitor for the CNS and PNS. Dev Biol 200:1-15

    Article  PubMed  CAS  Google Scholar 

  76. Murray JA, Blakemore WF (1980) The relationship between internodal length and fibre diameter in the spinal cord of the cat. J Neurol Sci 45:29-41

    Article  PubMed  CAS  Google Scholar 

  77. O’Leary MT, Blakemore WF (1997) Use of a rat y chromosome probe to determine the longterm survival of glial cells transplanted into areas of CNS demyelination. J Neurocytol 26:191-206

    Article  PubMed  Google Scholar 

  78. O’Leary MT, Hinks GL, Charlton HM, Franklin RJM (2002) Increasing local levels of IGF-I MRNA expression using adenoviral vectors does not alter oligodendrocyte remyelination in the CNS of aged rats. Mol Cell Neurosci 19:32-42

    Article  PubMed  CAS  Google Scholar 

  79. Penderis J, Shields SA, Franklin RJ (2003) Impaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system. Brain 126:1382-1391

    Article  PubMed  Google Scholar 

  80. Penderis J, Woodruff RH, Lakatos A, Li WW, Dunning MD, Zhao C, Marchionni M, Franklin RJM (2003) Increasing local levels of neuregulin (glial growth factor-2) by direct infusion into areas of demyelination does not alter remyelination in the rat CNS. Eur J Neurosci 18:2253-2264

    Article  PubMed  Google Scholar 

  81. Raine CS, Diaz M, Pakingan M, Bornstein MB (1978) Antiserum-induced dissociation of myelinogenesis in vitro. An ultrastructural study. Lab Invest 38:397-403

    Article  PubMed  CAS  Google Scholar 

  82. Reynolds R, Wilkin GP (1993) Cellular reaction to an acute demyelinating/remyelinating lesion of the rat brain stem: Localisation of GD3 ganglioside immunoreactivity. J Neurosci Res 36:405-422

    Article  PubMed  CAS  Google Scholar 

  83. Sasaki M, Honmou O, Akiyama Y, Uede T, Hashi K, Kocsis JD (2001) Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons. Glia 35:26-34

    Article  PubMed  CAS  Google Scholar 

  84. Shields SA, Gilson JM, Blakemore WF, Franklin RJM (1999) Remyelination occurs as extensively but more slowly in old rats compared to young rats following gliotoxin-induced CNS demyelination. Glia 28:77-83

    Article  PubMed  CAS  Google Scholar 

  85. Sim FJ, Hinks GL, Franklin RJM (2000) The re-expression of the homeodomain transcription factor Gtx during remyelination of experimentally-induced demyelinating lesions in young and old rat brain. Neuroscience 100:131-139

    Article  PubMed  CAS  Google Scholar 

  86. Sim FJ, Zhao C, Penderis J, Franklin RJM (2002) The age-related decrease in CNS remyelination efficiency is attributable to an impairment of both oligodendrocyte progenitor recruitment and differentiation. J Neurosci 22:2451-2459

    PubMed  CAS  Google Scholar 

  87. Smith KJ, Blakemore WF, McDonald WI (1979) Central remyelination restores secure conduction. Nature 280:395-396

    Article  PubMed  CAS  Google Scholar 

  88. Smith KJ, Blakemore WF, McDonald WI (1981) The restoration of conduction by central remyelination. Brain 104:383-404

    Article  PubMed  CAS  Google Scholar 

  89. Smith KJ, Hall SM (1994) Central demyelination induced in vivo by the calcium ionophore ionomycin. Brain 117:1351-1356

    Article  PubMed  Google Scholar 

  90. Smith PM, Blakemore WF (2000) Porcine neural progenitors require commitment to the oligodendrocyte lineage prior to transplantation in order to achieve significant remyelination of demyelinated lesions in the adult CNS. Eur J Neurosci 12:2414-2424

    Article  PubMed  CAS  Google Scholar 

  91. Stidworthy MF, Genoud S, Suter U, Mantei N, Franklin RJM (2003) Quantifying the early stages of remyelination following cuprizone-induced demyelination. Brain Pathol 13:329-339

    Article  PubMed  Google Scholar 

  92. Talbott JF, Cao Q, Enzmann GU, Benton RL, Achim V, Cheng XX, Mills MD, Rao MS, Whittemore SR (2006) Schwann cell-like differentiation by adult oligodendrocyte precursor cells following engraftment into the demyelinated spinal cord is BMP-dependent. Glia 54:147-159

    Article  PubMed  Google Scholar 

  93. Talbott JF, Loy DN, Liu Y, Qiu MS, Bunge MB, Rao MS, Whittemore SR (2005) Endogenous nkx2.2+/olig2+ oligodendrocyte precursor cells fail to remyelinate the demyelinated adult rat spinal cord in the absence of astrocytes. Exp Neurol 192:11-24

    Article  PubMed  CAS  Google Scholar 

  94. Targett MP, Sussman J, Scolding N, O’Leary MT, Compston DA, Blakemore WF (1996) Failure to achieve remyelination of demyelinated rat axons following transplantation of glial cells obtained from the adult human brain. Neuropathol Appl Neurobiol 22:199-206

    Article  PubMed  CAS  Google Scholar 

  95. Tepavcevic V, Blakemore WF (2006) Haplotype matching is not an essential requirement to achieve remyelination of demyelinating CNS lesions. Glia 54:880-890

    Article  PubMed  CAS  Google Scholar 

  96. Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18:601-699

    PubMed  CAS  Google Scholar 

  97. Wolswijk G (2000) Oligodendrocyte survival, loss and birth in lesions of chronic-stage multiple sclerosis. Brain 123:105-115

    Article  PubMed  Google Scholar 

  98. Woodruff RH, Franklin RJM (1999) Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin, ethidium bromide, and complement/anti-galactocerebroside: A comparative study. Glia 25:216-228

    Article  PubMed  CAS  Google Scholar 

  99. Woodruff RH, Fruttiger M, Richardson WD, Franklin RJM (2004) Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Mol Cell Neurosci 25:252-62

    Article  PubMed  CAS  Google Scholar 

  100. Yajima K, Suzuki K (1979) Demyelination and remyelination in the rat central nervous system following ethidium bromide injection. Lab Invest 41:385-392

    PubMed  CAS  Google Scholar 

  101. Yao DL, Komoly S, Zhang QL, Webster HD (1994) Myelinated axons demonstrated in the CNS and PNS by anti-neurofilament immunoreactivity and Luxol fast blue counterstaining. Brain Pathol 4:97-100

    Article  PubMed  CAS  Google Scholar 

  102. Zhao C, Li WW, Franklin RJM (2006) Differences in the early inflammatory responses to toxin-induced demyelination are associated with the age-related decline in CNS remyelination. Neurobiol Aging 27:1298-1307

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Blakemore, W.F., Franklin, R.J.M. (2008). Remyelination in Experimental Models of Toxin-Induced Demyelination. In: Rodriguez, M. (eds) Advances in multiple Sclerosis and Experimental Demyelinating Diseases. Current Topics in Microbiology and Immunology, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73677-6_8

Download citation

Publish with us

Policies and ethics