Skip to main content

Pathological Heterogeneity of Idiopathic Central Nervous System Inflammatory Demyelinating Disorders

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 318))

The last decade has seen a resurgence of interest in MS neuropathology.This resurgence was partly fueled by the development of new molecular and histochemical tools to examine the MS lesion microscopically, as well as technological advances in neuroimaging, which permit a dynamic assessment of lesion formation and disease progression. The heterogeneous pathology of MS in relation to stage of lesion activity, phase of disease, and clinical course is discussed. Pathological studies reveal that the immune factors associated with multiple different effector mechanisms contribute to the inflammation, demyelination, and tissue injury observed in MS lesions. While many agree that pathological heterogeneity exists in white matter demyelinated lesions, it is uncertain whether these observations are patient-dependent and reflect pathogenic heterogeneity or, alternatively, are stage-dependent with multiple mechanisms occurring sequentially within a given patient. Evidence supporting both concepts is presented. Remyelination is present in MS lesions; however, the factors contributing to the extent of repair and oligodendrocyte survival differ depending on the disease phase. A variable and patient-dependent extent of remyelination is observed in chronic MS cases and will likely need to be considered when designing future clinical trials aimed to promote CNS repair. MS is one member of a spectrum of CNS idiopathic inflammatory demyelinating disorders that share the basic pathological hallmark of CNS inflammatory demyelination. Advances based on recent systematic clinicopathologic-serologic correlative approaches have led to novel insights with respect to the classification of these disorders, as well as a better understanding of the underlying pathogenic mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboul-Enein F, Lassmann H (2005) Mitochondrial damage and histiotoxic hypoxia: a pathway of tissue injury in inflammatory brain disease. Acta Neuropathol 109:49-55

    CAS  PubMed  Google Scholar 

  2. Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Bruck W, Lucchinetti C, Schmidbauer M, Jellinger K et al (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62:25-33

    CAS  PubMed  Google Scholar 

  3. Amiry-Moghaddam M, Otsuka T, Hurn PD, Traystman RJ, Haug FM, Froehner SC, Adams ME, Neely JD, Agre P, Ottersen OP, Bhardwaj A (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U St A 100:2106-2111

    CAS  Google Scholar 

  4. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N, Hohlfeld R, Friese M, Schroder R, Deckert M, Schmidt S, Ravid R, Rajewsky K (2000) Clonal expansion of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393-404

    CAS  PubMed  Google Scholar 

  5. Baig S, Olsson O, Olsson T, Love A, Jeansson S, Link H (1989) Cells producing antibody to measles and herpes simplex virus in cerebrospinal fluid and blood of patients with multiple sclerosis and controls. Clin Exp Immunol 78:390-395

    CAS  PubMed  Google Scholar 

  6. Baker AB (1968) Problems in the classification of multiple sclerosis. In: Alter M, Kurtzke JF (eds) The epidemiology of multiple sclerosis. Charles C. Thomas, Springfield, IL, pp 14-25.

    Google Scholar 

  7. Baranzini SE, Jeong MC, Butunoi C et al (1999) B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Immunol 163:5133-5144

    CAS  PubMed  Google Scholar 

  8. Barkhof F, Bruck W, De Groot C, Bergers E, Hulshof S, Geurts J, Polman CH, van der Valk P (2003) Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch. Neurol. 60:1073-1081

    PubMed  Google Scholar 

  9. Barnett MH, Prineas JW (2004) Pathological heterogeneity in multiple sclerosis: a reflection of lesion stage? Ann Neurol 56:309

    Google Scholar 

  10. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Annals of Neurology 55:458-468

    PubMed  Google Scholar 

  11. Berger T, Rubner P, Schautzer F, Egg R, Ulmer H, Mayringer I, Dilitz E, Deisenhammer F, Reindl M (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349:139-145

    CAS  PubMed  Google Scholar 

  12. Bieber AJ, Ure DR, Rodriguez M (2005) Genetically dominant spinal cord repair in a murine model of chronic progressive multiple sclerosis. J Neuropathol Exp Neurol 64:46-57

    CAS  PubMed  Google Scholar 

  13. Bitsch A, Bruhn H, Vougioukas V, Stringaris A, Lassmann H, Frahm J, Bruck W (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619-1627

    CAS  PubMed  Google Scholar 

  14. Bo L, Dawson T, Wesselingh S et al (1994) Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 36:778-786

    CAS  PubMed  Google Scholar 

  15. Booss J, Esiri MM, Tourtellotte WW, Mason DY (1983) Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J Neurol Sci 62:219-232

    CAS  PubMed  Google Scholar 

  16. Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, Boot RG et al (2006) Myelin-laden macrophages are anti-inflammatory consistent with foam cells in multiple sclerosis. Brain 129:517-526

    PubMed  Google Scholar 

  17. Brown GC, Borutaite V (2002) Nitric oxide inhibition of mitochondrial respiration and its role in cell death. Free Radic Biol Med 33:1440-1450

    CAS  PubMed  Google Scholar 

  18. Bruck W, Porada P, Poser S, Rieckmann P, Hanefeld F, Kretchmar HA, et al (1995) Monocyte-macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 38:788-796

    CAS  PubMed  Google Scholar 

  19. Charcot JM (1868) Histologie de la sclérose en plaques. Gaz Hop Civils Militaires 140, 141, 143:554-555, 557-558, 566

    Google Scholar 

  20. Chen C, Ro L, Chang C, Ho Y, Lu C (1996) Serial MRI studies in pathologically verified Balo’s concentric sclerosis. J Comput Assist Tomogr 20:732-735

    CAS  PubMed  Google Scholar 

  21. Christians ES, Yan LJ, Benjamin IJ (202) Heat shock factor 1 and heat shock proteins: critical partners in protection against acute cell injury. Crit Care Med 30:S43-S50

    Google Scholar 

  22. Corcione A, Aloisi F, Serafini B, Capello E, Mancardi GL, Pistoia V, Uccelli A (2005) B-cell differentiation in the CNS of patients with multiple sclerosis. Autoimmun Rev 4:594-654

    Google Scholar 

  23. Corcione A, Casazza S, Ferretti E, Giunti G, Zappia E, Pistorio A, Gambini C, Mancardi GL, Uccelli A, Pistoia V (2004) Recapitulation of B cell differentiation in the central nervous system of patients with multiple sclerosis. Proc Natl Acad Sci USA 10:11064-11069

    Google Scholar 

  24. Courville C (1970) Concentric sclerosis. In: Bruyn PV (ed) Handbook of Clinical Neurology. Elsevier, Amsterdam, pp 437-451.

    Google Scholar 

  25. Cross A, Trotter J, Lyons J (2001) B cells and antibodies in CNS demyelinating disease. J Neuroimmunol 112:1-14

    CAS  PubMed  Google Scholar 

  26. De Groot C, Ruuls S, Theeuwes J, Dijkstra C, van der Valk P (1997) Immunocytochemical characterization of the expression of inducible and constitutive isoforms of nitric oxide synthase in demyelinating multiple sclerosis lesions. J Neuropathol Exp Neurol 56:10-20

    CAS  PubMed  Google Scholar 

  27. Esiri MM (1977) Immunoglobulin-containing cells in multiple sclerosis plaques. Lancet 2:478

    CAS  PubMed  Google Scholar 

  28. Forstermann U, Kleinert H (1995) Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedebergs Arch Pharmacol 352:351-364

    CAS  PubMed  Google Scholar 

  29. Franklin RJ (2002) Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 3:705-714

    CAS  PubMed  Google Scholar 

  30. Friese M, Fugger L (2005) Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128:1747-1763

    PubMed  Google Scholar 

  31. Garbern J, Spence A, Alvord E (1986) Balo’s concentric demyelination diagnosed premortem. Neurology 36:1610-1614

    CAS  PubMed  Google Scholar 

  32. Garthwaite G, Goodwin DA, Batchelor AM et al (2002) Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience 109:145-155

    CAS  PubMed  Google Scholar 

  33. Genain CP, Cannella B, Hauser SL, Raine CS (1999) Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nat Med 5:170-175

    CAS  PubMed  Google Scholar 

  34. Geurts JJ, Wolswijk G, Bo L, van der Valk P, Polman CH, Troost D, Aronica E (2003) Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain 126:1755-1766

    CAS  PubMed  Google Scholar 

  35. Gharagozloo A, Poe L, Collins G (1994) Antemortem diagnosis of Balo concentric sclerosis: correlative MR imaging and pathologic features. Radiology 191:817-819

    CAS  PubMed  Google Scholar 

  36. Giovannoni G, Heales S, Land J, Thompson E (1998) The potential role of nitric oxide in multiple sclerosis. Multiple Sclerosis 4:212-216

    CAS  PubMed  Google Scholar 

  37. Goes vd A, Boorsma W, Hoekstra K, Montagne L, De Groot CJ, Dijkstra CD (2005) Determination of the sequential degradation of myelin proteins by macropahges. J Neuroimm 161:12-20

    Google Scholar 

  38. Hafler DA, Slavik JM, Anderson DE, O’Connor KC, De Jager P, Baecher-Allan C (2005) Multiple sclerosis. Immunol Rev 204:208-231

    CAS  PubMed  Google Scholar 

  39. Hanemann C, Kleinschmidt A, Reifenberger G, Freud H, Seitz R (1993) Balo concentric sclerosis followed by MRI and positron emission tomography. Neuroradiology 35:578-580

    CAS  PubMed  Google Scholar 

  40. Hart M, Earle K (1975) Haemorrhagic and perivenous encephalitis: a clinical-pathological review of 38 cases. J Neurol Neurosurg Psychiatry 38:585-591

    CAS  PubMed  Google Scholar 

  41. Hendricks JJ, Teunissen CE, de Vries HE, Dijkstra CD (2005) Macrophages and neurodegeneration. Brain Res Reviews 48:185-195

    Google Scholar 

  42. Hill KE, Zollinger LV, Watt HE, Carlson NG, Rose JW (2004) Inducible nitric oxide synthase in chronic active multiple sclerosis plaques: distribution, cellular expression, and association with myelin damage. J Neuroimmunol 151:171-179

    CAS  PubMed  Google Scholar 

  43. Hoftberger R, Aboul-Enein F, Brueck W, Lucchinetti CF, Rodriguez M, Schmidbauer M, Jellinger K et al (2004) Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol 14:43-50

    CAS  PubMed  Google Scholar 

  44. Huseby ES, Liggitt D, Brabb T, Schnabel B, Öhlén C, Goverman J (2001) A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis. J Exp Med 194:669-676

    CAS  PubMed  Google Scholar 

  45. Jung J, Bhat R, Preston G, Guggino W, Baraban J, Agre P (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci USA 91:13052-13056

    CAS  PubMed  Google Scholar 

  46. Karaarslan E, Altintas A, Senol U, Yeni N, Dincer A, Bayindir C, KIaraagac N, Siva A (2001) Balo’s concentric sclerosis: clinical and radiologic features of five cases. AJNR Am J Neuroradiol 22:1362-1367

    CAS  PubMed  Google Scholar 

  47. Keegan M, Konig F, McClelland R, Bruck W, Morales Y, Bitsch A, Panitch H, Lassmann H, Weinshenker B, Rodriguez M, Parisi J, Lucchinetti CF (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366:579-582

    PubMed  Google Scholar 

  48. Kerschensteiner M, Gallmeier E, Behrens L, Klinkert WEF, Kolbeck R, Hoppe E, OropezaWekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells and monocytes produce brain-derived neurotrophic factor (BDNF) in vitro and in brain lesions: a neuroprotective role for inflammation? J Exp Med 189:865-870

    CAS  PubMed  Google Scholar 

  49. Kerschensteiner M, Stadelmann C, Dechang G, Wekerle H, Hohlfeld R (2003) Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 53:292-304

    CAS  PubMed  Google Scholar 

  50. Korte J, Born E, Vos L, Breuer T, Wondergem J (1994) Balo concentric sclerosis: MR diagnosis. AJNR Am J Neuroradiol 15:1284-1285

    CAS  PubMed  Google Scholar 

  51. Kuhle J, Pohl, Mehling M, Edan G, Freedman M, Hartung HP, Polman C, Miller D, Montalban X, Barkhof F, Bauer L, Dahms S, Lindberg R, Kappos L, Sandbrink R (2007) Lack of association between antimyelin antibodies and progression to multiple sclerosis. N Engl J Med 356:371-378

    CAS  PubMed  Google Scholar 

  52. Kuroiwa Y (1982) Clinical and epidemiological aspects of multiple sclerosis in Japan. Jpn J Med 21:135-140

    CAS  PubMed  Google Scholar 

  53. Lassmann H (1983) Comparative neuropathology of chronic experimental allergic encephalomyelitis and multiple sclerosis. Springer Schriftenr Neurol 25:1-135

    CAS  Google Scholar 

  54. Lassmann H, Raine C, Antel J, Prineas J (1998) Immunopathology of multiple sclerosis: Report on an international meeting held at the Institute of Neurology of the University of Vienna. J Neuroimmunol 86:213-217

    CAS  PubMed  Google Scholar 

  55. Lassmann H, Wisniewski HM (1979) Chronic relapsing experimental allergic encephalomyelitis: morphological sequence of myelin degradation. Brain Res 169:357-368

    CAS  PubMed  Google Scholar 

  56. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR (2005) IgG marker of opticspinal MS binds to the aquaporin-4 water channel. J Exp Med 202:473-477

    CAS  PubMed  Google Scholar 

  57. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG (2004) A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. Lancet 364:2106-2112

    CAS  PubMed  Google Scholar 

  58. Linington C, Bradl M, Lassmann H, Brunner C, Vass K (1988) Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130:443-454

    CAS  PubMed  Google Scholar 

  59. Liu J, Zhao M, Brosnan C, Lee S (2001) Expression of inducible nitric oxide synthase and nitrotyrosine in multiple sclerosis lesions. Am J Pathol 158:2057-2066

    CAS  PubMed  Google Scholar 

  60. Lock C, Hermans G, Pedotti R et al (2002) Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med 8:500-508

    CAS  PubMed  Google Scholar 

  61. Lucchinetti CF, Bruck W, Lassmann H (2004) Evidence for pathogenic heterogeneity in multiple sclerosis. Ann Neurol 56:308

    PubMed  Google Scholar 

  62. Lucchinetti CF, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707-717

    CAS  PubMed  Google Scholar 

  63. Lucchinetti CF, Brueck W, Rodriguez M, Parisi J, Scheithauer B, Lassmann H (1999) A quantitative study on the fate of the oligodendrocyte in multiple sclerosis lesions: a study of 113 cases. Brain 122:2279-2295

    PubMed  Google Scholar 

  64. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassmann H (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450-1461

    PubMed  Google Scholar 

  65. Mantovani A, Sica A, Locati M (2005) Macrophage polarization comes of age. Immunity 23:344-346

    CAS  PubMed  Google Scholar 

  66. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677-686

    CAS  PubMed  Google Scholar 

  67. Marburg O (1906) Die sogenannte “akute Multiple Sklerose”. J Psychiatr Neurol 27:211-212

    Google Scholar 

  68. Martino G, Olsson T, Fredrikson S, Hojeberg B, Kostulas V, Grimaldi LM, Link H (1991) Cells producing antibodies specific for myelin basic protein region 70-89 are predominant in cerebrospinal fluid from patients with multiple sclerosis. Eur J Immunol 21:2971-2976

    CAS  PubMed  Google Scholar 

  69. Matute C, Alberdi E, Domercq M, Perez-Cerda F, Perez-Samartin A, Sanchez-Gomez MV (2001) The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci 24:224-230

    CAS  PubMed  Google Scholar 

  70. Mehta PD, Frisch S, Thormar H et al (1981) Bound antibody in multiple sclerosis brains. J Neurol Sci 49:91-98

    CAS  PubMed  Google Scholar 

  71. Neumann H, Medana IM, Bauer J, Lassmann H (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 25:313-319

    CAS  PubMed  Google Scholar 

  72. O’Connor KC B-OA, Hafler DA (2001) The neuroimmunology of multiple sclerosis: possible roles of T and B lymphocytes in immunopathogenesis. J Clin Immunol 21:81-92

    PubMed  Google Scholar 

  73. Olsson T, Zhi WW, Hojeberg B, Kostulas V, Jiang YP, Anderson G, Ekre HP, Link H (1990) Autoreactive T lymphocytes in multiple sclerosis determined by antigen-induced secretion of interferon-gamma. J Clin Invest 86:981-985

    CAS  PubMed  Google Scholar 

  74. Oppenheimer DR (1976) Demyelinating diseases. In: Blackwood W, Corsellis JAN (eds) Greenfield’s neuropathology. Edward Arnold, London pp 470-499

    Google Scholar 

  75. Owens GP, Kraus H, Burgoon MP et al (1998) Restricted use of VH4 germline segments in an acute multiple sclerosis brain. Ann Neurol 43:236-243

    CAS  PubMed  Google Scholar 

  76. Owens GP, Ritchie AM, Burgoon MP et al (2003) Single-cell repertoire analysis demonstrates that clonal expansion is a prominent feature of the B cell response in multiple sclerosis cerebrospinal flu. J Immunol 171:2725-2733

    CAS  PubMed  Google Scholar 

  77. Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, Sorensen P, Brück W, Lucchinetti CF, Lassmann H (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165-3172

    PubMed  Google Scholar 

  78. Pittock SJ, McClelland RL, Achenbach SJ, Konig F, Bitsch A, Bruck W, Lassmann H, Parisi J, Lucchinetti CF (2005) Clinical course, pathologic correlations and outcome of biopsy proven inflammatory demyelinating disease. J Neurol Neurosurg Psychiatry 767:1693-1697

    Google Scholar 

  79. Prineas J (1985) The neuropathology of multiple sclerosis. In: Vinken P, Bruyn G, Klawans H (eds) Handbook of clinical neurology. Elsevier Science, New York pp 213-257

    Google Scholar 

  80. Prineas J, McDonald WI, Franklin JM (2002) Demyelinating diseases. In: Graham LP (ed) Greenfield’s neuropathology. Edward Arnold, London pp 471-550.

    Google Scholar 

  81. Prineas JW, Barnard RO, Revesz T, Kwon EE, Sharer L, Cho ES (1993) Multiple sclerosis. Pathology of recurrent lesions. Brain 116:681-693

    PubMed  Google Scholar 

  82. Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak EL, Hoffman B, Morgan BP (2001) Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol 50:646-657

    CAS  PubMed  Google Scholar 

  83. Prineas JW, Wright RG (1978) Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab Invest 38:409-421

    CAS  PubMed  Google Scholar 

  84. Qin Y, Duquette P, Zhang Y et al (1998) Clonal expansion and somatic hypermutation of V (H) genes of B cells from cerebrospinal fluid in multiple sclerosis. J Clin Invest 102:1045-1050

    CAS  PubMed  Google Scholar 

  85. Redford EJ, Kapoor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain 120:2149-2157

    PubMed  Google Scholar 

  86. Revel M, Valiente E, Gray F, Beges C, Degos J, Brugieres P (1993) Concentric MR patterns in multiple sclerosis. Report of two cases. J Neuroradiol 20:252-257

    CAS  PubMed  Google Scholar 

  87. Roemer SF, Parisi JE, Lennon VA, Benarroch EE, Lassmann H, Bruck W, Mandler RN, Weinshenker BG, Pittock SJ, Wingerchuk DM, Lucchinetti CF (2007) Pattern specific loss of aquaporin 4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis. Brain 130:1174-1205

    Google Scholar 

  88. Schwartz M, Butovsky O, Bruck W et al (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29:68-74

    CAS  PubMed  Google Scholar 

  89. Serafini B, Rosicarelli B, Magliozzi R et al (2004) Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol 14:164-174

    Article  PubMed  Google Scholar 

  90. Sharp FR, Bernaudin M (2004) HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5:437-448

    CAS  PubMed  Google Scholar 

  91. Smith KJ, Kapoor R, Hall SM, Davies M (2001) Electrically active axons degenerate when exposed to nitric oxide. Ann Neurol 49:470-476

    CAS  PubMed  Google Scholar 

  92. Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1:232-241

    CAS  PubMed  Google Scholar 

  93. Smith-Jensen T, Burgoon MP, Anthony J et al (2000) Comparison of immunoglobulin G heavy-chain sequences in MS and SSPE brains reveals an antigen-driven response. Neurology 54:1227-1232

    CAS  PubMed  Google Scholar 

  94. Spiegel M, Kruger H, Hofmann E, Kappos L (1989) MRI study of Balo’s concentric sclerosis before and after immunosuppressant therapy. J Neurol 236:487-488

    CAS  PubMed  Google Scholar 

  95. Stadelmann C, Kerschensteiner M, Misgeld T et al (2002) BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune cells and neuronal cells. Brain 125:75-85

    PubMed  Google Scholar 

  96. Stadelmann C, Ludwin SK, Tabira T, Guseo A, Lucchinetti C, Brück W, Lassmann H (2005) Hypoxic preconditioning explains concentric lesions in Balo’s type of multiple sclerosis. Brain 128:979-987

    PubMed  Google Scholar 

  97. Storch MK, Piddlesden S, Haltia M, Livanainen M, Morgan P, Lassmann H (1998) Multiple sclerosis: in situ evidence for antibody- and complement-mediated demyelination. Ann Neurol 43:465-471

    CAS  PubMed  Google Scholar 

  98. Sun D, Whitaker JN, Huang Z, Liu D, Coleclough C, Wekerle H, Raine CS (2001) Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 166:7579-7587

    CAS  PubMed  Google Scholar 

  99. Sun J, Link H, Olsson T et al (1991) T and B cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J Immunol 146:1490-1495

    CAS  PubMed  Google Scholar 

  100. Traugott U (1983) Multiple sclerosis: relevance of class I and class II MHC-expressing cells to lesion development. J Neuroimmunol 16:283-302

    Google Scholar 

  101. Turnbull HM, McIntosh J (1926) Encephalomyelitis following vaccination. Br J Exp Pathol 7:181-222

    Google Scholar 

  102. Van Bogaert L (1950) Post-infectious encephalomyelitis and multiple sclerosis; the significance of perivenous encephalomyelitis. J Neuropathol Exp Neurol 9:219-249

    CAS  PubMed  Google Scholar 

  103. Vass K, Welch WJ, Nowak TS (1988) Localization of 70-kDa stress protein induction in gerbil brain after ischemia. Acta Neuropathol 77:128-135

    CAS  PubMed  Google Scholar 

  104. Werner P Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50:169-180

    Google Scholar 

  105. Williamson RA, Burgoon MP, Owens GP et al (2001) Anti-DNA antibodies are a major component of the intrathecal B cell response in multiple sclerosis. Proc Natl Acad Sci USA 98:1793-1798

    CAS  PubMed  Google Scholar 

  106. Wingerchuk D, Pittock S, Lennon V, Lucchinetti C, Weinshenker B (2005) Neuromyelitis optica diagnostic criteria revisited: validation and incorporation of the NMO-IgG serum autoantibody. Neurology 64:A38

    Google Scholar 

  107. Wolswijk G (1998) Chronic stage multiple sclerosis lesions contain a relatively quiescent population of oligodendrocyte precursor cells. J Neurosci 18:601-609

    CAS  PubMed  Google Scholar 

  108. Wood DD, Bilbao JM, O’Connors P, Moscarello MA (1996) Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann Neurol 40:18-24

    CAS  PubMed  Google Scholar 

  109. Youl BD, Kermode AG, Thompson AJ, Revesz T, Scaravilli F, Barnard RO, Kirkham FJ, Kendall BE, Kingsley D, Moseley IF (1991) Destructive lesions in demyelinating disease. J Neurol Neurosurg Psychiatry 54:288-292

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lucchinetti, C. (2008). Pathological Heterogeneity of Idiopathic Central Nervous System Inflammatory Demyelinating Disorders. In: Rodriguez, M. (eds) Advances in multiple Sclerosis and Experimental Demyelinating Diseases. Current Topics in Microbiology and Immunology, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73677-6_2

Download citation

Publish with us

Policies and ethics