Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 318))

Small-animal magnetic resonance imaging is becoming an increasingly utilized noninvasive tool in the study of animal models of MS including the most commonly used autoimmune, viral, and toxic models. Because most MS models are induced in rodents with brains and spinal cords of a smaller magnitude than humans, small-animal MRI must accomplish much higher resolution acquisition in order to generate useful data. In this review, we discuss key aspects and important differences between high field strength experimental and human MRI. We describe the role of conventional imaging sequences including T1, T2, and proton densityweighted imaging, and we discuss the studies aimed at analyzing blood—brain barrier (BBB) permeability and acute inflammation utilizing gadolinium-enhanced MRI. Advanced MRI methods, including diffusion-weighted and magnetization transfer imaging in monitoring demyelination, axonal damage, and remyelination, and studies utilizing in vivo T1 and T2 relaxometry, provide insight into the pathology of demyelinating diseases at previously unprecedented details. The technical challenges of small voxel in vivo MR spectroscopy and the biologically relevant information obtained by analysis of MR spectra in demyelinating models is also discussed. Novel cell-specific and molecular imaging techniques are becoming more readily available in the study of experimental MS models. As a growing number of tissue restorative and remyelinating strategies emerge in the coming years, noninvasive monitoring of remyelination will be an important challenge in small-animal imaging. High field strength small-animal experimental MRI will continue to evolve and interact with the development of new human MR imaging and experimental NMR techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens ET, Laidlaw DH, Readhead C, Brosnan CF, Fraser SE, Jacobs RE (1998) Mr microscopy of transgenic mice that spontaneously acquire experimental allergic encephalomyelitis. Magn Reson Med 40:119-132

    Article  CAS  PubMed  Google Scholar 

  2. Barkhof F, Bruck W, De Groot CJ, Bergers E, Hulshof S, Geurts J, Polman CH, van der Valk P (2003) Remyelinated lesions in multiple sclerosis: magnetic resonance image appearance. Arch Neurol 60:1073-1081

    Article  PubMed  Google Scholar 

  3. Biton IE, Mayk A, Kidron D, Assaf Y, Cohen Y (2005) Improved detectability of experimental allergic encephalomyelitis in excised swine spinal cords by high b-value q-space DWI. Exp Neurol 195:437-446

    Article  CAS  PubMed  Google Scholar 

  4. Brenner RE, Munro PM, Williams SC, Bell JD, Barker GJ, Hawkins CP, Landon DN, McDonald WI (1993) The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 29:737-745

    Article  CAS  PubMed  Google Scholar 

  5. Cook LL, Foster PJ,Karlik SJ (2005) Pathology-guided MR analysis of acute and chronic experimental allergic encephalomyelitis spinal cord lesions at 1.5 T. J Magn Reson Imaging 22:180-188

    Article  PubMed  Google Scholar 

  6. Cook LL, Foster PJ, Mitchell JR, Karlik SJ (2004) In vivo 4.0-T magnetic resonance investigation of spinal cord inflammation, demyelination, and axonal damage in chronic-progressive experimental allergic encephalomyelitis. J Magn Reson Imaging 20:563-571

    Article  PubMed  Google Scholar 

  7. Deloire-Grassin MS, Brochet B, Quesson B, Delalande C, Dousset V, Canioni P, Petry KG (2000) In vivo evaluation of remyelination in rat brain by magnetization transfer imaging. J Neurol Sci 178:10-16

    Article  CAS  PubMed  Google Scholar 

  8. Dousset V, Gomez C, Petry KG, Delalande C, Caille JM (1999) Dose and scanning delay using USPIO for central nervous system macrophage imaging. Magma 8:185-189

    Article  CAS  PubMed  Google Scholar 

  9. Dousset V, Grossman RI, Ramer KN, Schnall MD, Young LH, Gonzalez-Scarano F, Lavi E, Cohen JA (1992) Experimental allergic encephalomyelitis and multiple sclerosis: lesion characterization with magnetization transfer imaging. Radiology 182:483-491

    CAS  PubMed  Google Scholar 

  10. Duckers HJ, Muller HJ, Verhaagen J, Nicolay K, Gispen WH (1997) Longitudinal in vivo magnetic resonance imaging studies in experimental allergic encephalomyelitis: effect of a neurotrophic treatment on cortical lesion development. Neuroscience 77:1163-1173

    Article  CAS  PubMed  Google Scholar 

  11. Floris S, Blezer EL, Schreibelt G, Dopp E, van der Pol SM, Schadee-Eestermans IL, Nicolay K, Dijkstra CD, de Vries HE (2004) Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 127:616-627

    Article  CAS  PubMed  Google Scholar 

  12. Gareau PJ, Rutt BK, Karlik SJ, Mitchell JR (2000) Magnetization transfer and multicomponent t2 relaxation measurements with histopathologic correlation in an experimental model of MS. J Magn Reson Imaging 11:586-595

    Article  CAS  PubMed  Google Scholar 

  13. Gareau PJ, Wymore AC, Cofer GP, Johnson GA (2002) Imaging inflammation: direct visualization of perivascular cuffing in EAE by magnetic resonance microscopy. J Magn Reson Imaging 16:28-36

    Article  PubMed  Google Scholar 

  14. Genain CP, Lee-Parritz D, Nguyen MH, Massacesi L, Joshi N, Ferrante R, Hoffman K, Moseley M, Letvin NL, Hauser SL (1994) In healthy primates, circulating autoreactive t cells mediate autoimmune disease. J Clin Invest 94:1339-1345

    Article  CAS  PubMed  Google Scholar 

  15. Genain CP, Roberts T, Davis RL, Nguyen MH, Uccelli A, Faulds D, Li Y, Hedgpeth J, Hauser SL (1995) Prevention of autoimmune demyelination in non-human primates by a camp-specific phosphodiesterase inhibitor. Proc Natl Acad Sci U S A 92:3601-3605

    Article  CAS  PubMed  Google Scholar 

  16. Grossman RI, Lisak RP, Macchi PJ, Joseph PM (1987) MR of acute experimental allergic encephalomyelitis. AJNR Am J Neuroradiol 8:1045-1048

    CAS  PubMed  Google Scholar 

  17. Guy J, Fitzsimmons J, Ellis EA, Beck B, Mancuso A (1992) Intraorbital optic nerve and experimental optic neuritis. Correlation of fat suppression magnetic resonance imaging and electron microscopy. Ophthalmology 99:720-725

    CAS  PubMed  Google Scholar 

  18. Guy J, Fitzsimmons J, Ellis EA, Mancuso A (1990) Gadolinium-DTPA-enhanced magnetic resonance imaging in experimental optic neuritis. Ophthalmology 97:601-607

    CAS  PubMed  Google Scholar 

  19. Guy J, McGorray S, Fitzsimmons J, Beck B, Mancuso A, Rao NA, Hamed L (1994) Reversals of blood-brain barrier disruption by catalase: a serial magnetic resonance imaging study of experimental optic neuritis. Invest Ophthalmol Vis Sci 35:3456-3465

    CAS  PubMed  Google Scholar 

  20. Guy J, McGorray S, Qi X, Fitzsimmons J, Mancuso A, Rao N (1994) Conjugated deferoxamine reduces blood-brain barrier disruption in experimental optic neuritis. Ophthalmic Res 26:310-323

    Article  CAS  PubMed  Google Scholar 

  21. Hawkins CP, Mackenzie F, Tofts P, du Boulay EP, McDonald WI (1991) Patterns of bloodbrain barrier breakdown in inflammatory demyelination. Brain 114:801-810

    Article  PubMed  Google Scholar 

  22. Hawkins CP, Munro PM, Landon DN, McDonald WI (1992) Metabolically dependent blood-brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis. Acta Neuropathol (Berl) 83:630-635

    Article  CAS  Google Scholar 

  23. Hawkins CP, Munro PM, MacKenzie F, Kesselring J, Tofts PS, du Boulay EP, Landon DN, McDonald WI (1990) Duration and selectivity of blood-brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis studied by gadolinium-DTPA and protein markers. Brain 113:365-378

    Article  PubMed  Google Scholar 

  24. Heide AC, Richards TL, Alvord EC Jr, Peterson J, Rose LM (1993) Diffusion imaging of experimental allergic encephalomyelitis. Magn Reson Med 29:478-484

    Article  CAS  PubMed  Google Scholar 

  25. Karlik SJ, Grant EA, Lee D, Noseworthy JH (1993) Gadolinium enhancement in acute and chronic-progressive experimental allergic encephalomyelitis in the guinea pig. Magn Reson Med 30:326-331

    Article  CAS  PubMed  Google Scholar 

  26. Karlik SJ, Munoz D, St Louis J, Strejan G (1999) Correlation between MRI and clinicopathological manifestations in Lewis rats protected from experimental allergic encephalomyelitis by acylated synthetic peptide of myelin basic protein. Magn Reson Imaging 17:731-737

    Article  CAS  PubMed  Google Scholar 

  27. Karlik SJ, Wong C, Gilbert JJ, Noseworthy JH (1989) NMR studies in the relapsing experimental allergic encephalomyelitis (EAE) model of multiple sclerosis in the strain 13 guinea pig. Magn Reson Imaging 7:463-473

    Article  CAS  PubMed  Google Scholar 

  28. Kim JH, Budde MD, Liang HF, Klein RS, Russell JH, Cross AH, Song SK (2006) Detecting axon damage in spinal cord from a mouse model of multiple sclerosis. Neurobiol Dis 21:626-632

    Article  CAS  PubMed  Google Scholar 

  29. Kuharik MA, Edwards MK, Farlow MR, Becker GJ, Azzarelli B, Klatte EC, Augustyn G, Dreesen RG (1988) Gd-enhanced MR imaging of acute and chronic experimental demyelinating lesions. AJNR Am J Neuroradiol 9:643-648

    CAS  PubMed  Google Scholar 

  30. Lanens D, Van der Linden A, Gerrits PO, ‘s-Gravenmade EJ (1994) In vitro NMR microimaging of the spinal cord of chronic relapsing EAE rats. Magn Reson Imaging 12:469-475

    Article  CAS  PubMed  Google Scholar 

  31. Lassmann H, Ransohoff RM (2004) The CD4-th1 model for multiple sclerosis: A critical [correction of crucial] re-appraisal. Trends Immunol 25:132-137

    Article  CAS  PubMed  Google Scholar 

  32. Laule C, Vavasour IM, Moore GR, Oger J, Li DK, Paty DW, MacKay AL (2004) Water content and myelin water fraction in multiple sclerosis. A t2 relaxation study. J Neurol 251:284-293

    Article  CAS  PubMed  Google Scholar 

  33. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, Nakashima I, Weinshenker BG (2004) A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. Lancet 364:2106-2112

    Article  CAS  PubMed  Google Scholar 

  34. Li DK, Li MJ, Traboulsee A, Zhao G, Riddehough A, Paty D (2006) The use of MRI as an outcome measure in clinical trials. Adv Neurol 98:203-226

    PubMed  Google Scholar 

  35. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC, Sandberg-Wollheim M, Sibley W, Thompson A, van den Noort S, Weinshenker BY, Wolinsky JS (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121-127

    Article  CAS  PubMed  Google Scholar 

  36. McFarland HI, Lobito AA, Johnson MM, Palardy GR, Yee CS, Jordan EK, Frank JA, Tresser N, Genain CP, Mueller JP, Matis LA, Lenardo MJ (2001) Effective antigen-specific immunotherapy in the marmoset model of multiple sclerosis. J Immunol 166:2116-2121

    CAS  PubMed  Google Scholar 

  37. Merkler D, Boretius S, Stadelmann C, Ernsting T, Michaelis T, Frahm J, Bruck W (2005) Multicontrast MRI of remyelination in the central nervous system. NMR Biomed 18:395-403

    Article  PubMed  Google Scholar 

  38. Morrissey SP, Deichmann R, Syha J, Simonis C, Zettl U, Archelos JJ, Jung S, Stodal H, Lassmann H, Toyka KV, Haase A, Hartung HP (1996) Partial inhibition of AT-EAE by an antibody to icam-1: clinico-histological and MRI studies. J Neuroimmunol 69:85-93

    Article  CAS  PubMed  Google Scholar 

  39. Morrissey SP, Stodal H, Zettl U, Simonis C, Jung S, Kiefer R, Lassmann H, Hartung HP, Haase A, Toyka KV (1996) In vivo MRI and its histological correlates in acute adoptive transfer experimental allergic encephalomyelitis. Quantification of inflammation and oedema. Brain 119:239-248

    Article  PubMed  Google Scholar 

  40. Namer IJ, Steibel J, Klinguer C, Trifilieff E, Mohr M, Poulet P (1998) Magnetic resonance imaging of PLP-induced experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 92:22-28

    Article  CAS  PubMed  Google Scholar 

  41. Namer IJ, Steibel J, Poulet P, Armspach JP, Mauss Y, Chambron J (1992) In vivo dynamic MR imaging of MBP-induced acute experimental allergic encephalomyelitis in Lewis rat. Magn Reson Med 24:325-334

    Article  CAS  PubMed  Google Scholar 

  42. Namer IJ, Steibel J, Poulet P, Armspach JP, Mohr M, Mauss Y, Chambron J (1993) Bloodbrain barrier breakdown in MBP-specific t cell induced experimental allergic encephalomyelitis. A quantitative in vivo MRI study. Brain 116:147-159

    Article  PubMed  Google Scholar 

  43. Nelson AL, Bieber AJ, Rodriguez M (2004) Contrasting murine models of MS. Int MS J 11:95-99

    CAS  PubMed  Google Scholar 

  44. Noseworthy JH, Gilbert JJ, Vandervoort MK, Karlik SJ (1988) Postnatal NMR changes in guinea pig central nervous system: potential relevance to experimental allergic encephalomyelitis. Magn Reson Med 6:199-211

    Article  CAS  PubMed  Google Scholar 

  45. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938-952

    Article  CAS  PubMed  Google Scholar 

  46. Noth U, Morrissey SP, Deichmann R, Jung S, Adolf H, Haase A, Lutz J (1997) Perfluoro15-crown-5-ether labelled macrophages in adoptive transfer experimental allergic encephalomyelitis. Artif Cells Blood Substit Immobil Biotechnol 25:243-254

    Article  CAS  PubMed  Google Scholar 

  47. O’Brien JT, Noseworthy JH, Gilbert JJ, Karlik SJ (1987) NMR changes in experimental allergic encephalomyelitis: NMR changes precede clinical and pathological events. Magn Reson Med 5:109-117

    Article  PubMed  Google Scholar 

  48. Peersman GV, Van de Vyver FL, Lohman JE, Lubke U, Gheuens J, Bellon E, Connelly A, Martin JJ (1988) High resolution nuclear magnetic resonance imaging of the spinal cord in experimental demyelinating disease. Acta Neuropathol (Berl) 76:628-632

    Article  CAS  Google Scholar 

  49. Piraino PS, Yednock TA, Freedman SB, Messersmith EK, Pleiss MA, Karlik SJ (2005) Suppression of acute experimental allergic encephalomyelitis with a small molecule inhibitor of alpha4 integrin. Mult Scler 11:683-690

    Article  CAS  PubMed  Google Scholar 

  50. Pirko I, Ciric B, Gamez J, Bieber AJ, Warrington AE, Johnson AJ, Hanson DP, Pease LR, Macura SI, Rodriguez M (2004) A human antibody that promotes remyelination, enters the Cns and decreases lesion load as detected by T2-weighted spinal cord MRI in a virus-induced murine model of MS. FASEB J 18:1577-1579

    CAS  PubMed  Google Scholar 

  51. Pirko I, Fricke ST, Johnson AJ, Rodriguez M, Macura SI (2005) Magnetic resonance imaging, microscopy, and spectroscopy of the central nervous system in experimental animals. NeuroRx 2:250-264

    Article  PubMed  Google Scholar 

  52. Pirko I, Gamez J, Johnson AJ, Macura SI, Rodriguez M (2004) Dynamics of MRI lesion development in an animal model of viral-induced acute progressive CNS demyelination. Neuroimage 21:576-582

    Article  PubMed  Google Scholar 

  53. Pirko I, Johnson A, Ciric B, Gamez J, Macura SI, Pease LR, Rodriguez M (2004) In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. FASEB J 18:179-182

    CAS  PubMed  Google Scholar 

  54. Pirko I, Johnson A, Gamez J, Macura SI, Rodriguez M (2004) Disappearing “t1 black holes” in an animal model of multiple sclerosis. Front Biosci 9:1222-1227

    Article  CAS  PubMed  Google Scholar 

  55. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “mcdonald criteria”. Ann Neurol 58:840-846

    Article  PubMed  Google Scholar 

  56. Richards TL, Alvord EC Jr, Peterson J, Cosgrove S, Petersen R, Petersen K, Heide AC, Cluff J, Rose LM (1995) Experimental allergic encephalomyelitis in non-human primates: MRI and MRS may predict the type of brain damage. NMR Biomed 8:49-58

    Article  CAS  PubMed  Google Scholar 

  57. Rose LM, Richards TL, Peterson J, Petersen R, Alvord EC Jr (1997) Resolution of cns lesions following treatment of experimental allergic encephalomyelitis in macaques with monoclonal antibody to the cd18 leukocyte integrin. Mult Scler 2:259-266

    CAS  PubMed  Google Scholar 

  58. Sriram S, Steiner I (2005) Experimental allergic encephalomyelitis: A misleading model of multiple sclerosis. Ann Neurol 58:939-945

    Article  CAS  PubMed  Google Scholar 

  59. Stavraky RT, Grant CW, Barber KR, Karlik SJ (1993) Baseline consideration of liposomal contrast agent. CNS transport by macrophages in experimental allergic encephalomyelitis. Magn Reson Imaging 11:685-689

    Article  CAS  PubMed  Google Scholar 

  60. Steinman L, Zamvil SS (2006) How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol 60:12-21

    Article  CAS  PubMed  Google Scholar 

  61. Sun SW, Liang HF, Trinkaus K, Cross AH, Armstrong RC, Song SK (2006) Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med 55:302-308

    Article  PubMed  Google Scholar 

  62. Xu S, Jordan EK, Brocke S, Bulte JW, Quigley L, Tresser N, Ostuni JL, Yang Y, McFarland HF, Frank JA (1998) Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using mion-46 l enhanced in vivo MRI: early histopathological correlation. J Neurosci Res 52:549-558

    Article  CAS  PubMed  Google Scholar 

  63. Yu O, Steibel J, Mauss Y, Guignard B, Eclancher B, Chambron J, Grucker D (2004) Remyelination assessment by MRI texture analysis in a cuprizone mouse model. Magn Reson Imaging 22:1139-1144

    Article  PubMed  Google Scholar 

  64. Zamaroczy D, Schluesener HJ, Jolesz FA, Sobel RA, Colucci VM, Weiner HL, Sandor T (1991) Differentiation of experimental white matter lesions using multiparametric magnetic resonance measurements. Invest Radiol 26:317-324

    Article  CAS  PubMed  Google Scholar 

  65. Zivadinov R, Bakshi R (2004) Role of MRI in multiple sclerosis I: inflammation and lesions. Front Biosci 9:665-683

    Article  PubMed  Google Scholar 

  66. Zivadinov R, Bakshi R (2004) Role of MRI in multiple sclerosis II: brain and spinal cord atrophy. Front Biosci 9:647-664

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pirko, I., Johnson, A.J. (2008). Neuroimaging of Demyelination and Remyelination Models. In: Rodriguez, M. (eds) Advances in multiple Sclerosis and Experimental Demyelinating Diseases. Current Topics in Microbiology and Immunology, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73677-6_10

Download citation

Publish with us

Policies and ethics