Skip to main content

Zinc Oxide Grown by CVD Process as Transparent Contact for Thin Film Solar Cell Applications

  • Chapter
Book cover Transparent Conductive Zinc Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 104))

Metalorganic chemical vapor deposition of ZnO films (MOCVD) [1] started to be comprehensively investigated in the 1980s, when thin film industries were looking for ZnO deposition processes especially useful for large-scale coatings at high growth rates. Later on, when TCO for thin film solar cells started to be developed, another advantage of growing TCO films by the CVD process has been highlighted: the surface roughness. Indeed, a large number of studies on CVD ZnO revealed that an as-grown rough surface cn be obtained with this deposition process [2–4]. A rough surface induces a light scattering effect, which can significantly improve light trapping (and therefore current photo-generation) within thin film silicon solar cells. The CVD process, indeed, directly leads to as-grown rough ZnO films without any post-etching step (the latter is often introduced to obtain a rough surface, when working with as-deposited flat sputtered ZnO). This fact could turn out to be a significant advantage when upscaling the manufacturing process for actual commercial production of thin film solar modules. The zinc and oxygen sources for CVD growth of ZnO films are given in Table 6.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Kern, R.C. Heim, J. Electrochem. Soc. 117, 562 (1970)

    Article  Google Scholar 

  2. S. Faÿ, S. Dubail, U. Kroll, J. Meier, Y. Ziegler, A. Shah, in Proc. of the 16th European Photovoltaic Solar Energy Conference (Glasgow, UK, 2000), pp. 361-364

    Google Scholar 

  3. S. Faÿ, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Sol. Energy Mater. & Sol. Cells 86, 385 (2005)

    Article  Google Scholar 

  4. W.W. Wenas, Jpn. J. Appl. Phys. 30, L441 (1991)

    Article  ADS  Google Scholar 

  5. F.T.J. Smith, Appl. Phys. Lett. 43, 1108 (1983)

    Article  ADS  Google Scholar 

  6. S.K. Ghandhi, R.J. Field, J.R. Shealy, Appl. Phys. Lett. 37, 449 (1980)

    Article  ADS  Google Scholar 

  7. Y. Kashiwaba, F. Katahira, K. Haga, T. Sekiguchi, H. Watanabe, J. Cryst. Growth 221, 431 (2000)

    Article  ADS  Google Scholar 

  8. J.R. Shealy, B.J. Baliga, R.J. Field, S.K. Ghandhi, J. Electrochem. Soc. 128, 558 (1981)

    Article  Google Scholar 

  9. A.P. Roth, D.F. Williams, J. Appl. Phys. 52, 6685 (1981)

    Article  ADS  Google Scholar 

  10. J. Hu, R.G. Gordon, J. Appl. Phys. 72, 5381 (1992)

    Article  ADS  Google Scholar 

  11. C.K. Lau, S.K. Tiku, K.M. Lakin, J. Electrochem. Soc. 127, 1843 (1980)

    Article  Google Scholar 

  12. P.J. Wright, R.J.M. Griffiths, B. Cockayne, J. Cryst. Growth 66, 26 (1984)

    Article  ADS  Google Scholar 

  13. P. Souletie, S. Bethke, B.W. Wessels, H. Pan, J. Cryst. Growth 86, 248 (1988)

    Article  Google Scholar 

  14. S. Oda, H. Tokunaga, N. Kitajima, J.I. Hanna, I. Shimizu, H. Kokado, Jpn. J. Appl. Phys. 24, 1607 (1985)

    Article  ADS  Google Scholar 

  15. J. Hu, R.G. Gordon, Solar Cells 30, 437 (1991)

    Article  Google Scholar 

  16. M.L. Addonizio, A. Antonaia, S. Aprea, R.D. Rosa, G. Nobile, A. Rubino, E. Terzini, in Proc. of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion (Vienna, Austria, 1998), pp. 709-712

    Google Scholar 

  17. S. Faÿ, L’Oxyde de Zinc par Dépôt Chimique en Phase Vapeur comme Contact Electrique Transparent et Diffuseur de Lumière pour les Cellules Solaires. Ph.D. thesis, Ecole Polytechnique Fédéral de Lausanne (2003)

    Google Scholar 

  18. W.W. Wenas, A. Yamada, K. Takahashi, M. Yoshino, M. Konagai, J. Appl. Phys. 70, 7119 (1991)

    Article  ADS  Google Scholar 

  19. C.G.V. de Walle, Phys. Rev. Lett. 85, 1012 (2000)

    Article  ADS  Google Scholar 

  20. S.Y. Myong, K.S. Lim, Appl. Phys. Lett. 82, 3026 (2003)

    Article  ADS  Google Scholar 

  21. K. Adachi, K. Sato, Y. Gotoh, H. Nishimura, in Proc. of the 22nd IEEE Photovoltaic Specialists Conference (Las Vegas, USA, 1991), pp. 1385-1388

    Google Scholar 

  22. N.D. Kumar, M.N. Kamalasanan, S. Chandra, Appl. Phys. Lett. 65, 1373 (1994)

    Article  ADS  Google Scholar 

  23. A. Yamada, W.W. Wenas, M. Yoshino, M. Konagai, K. Takahashi, in Proc. of the 22nd IEEE Photovoltaic Specialists Conference (Las Vegas, USA, 1991), pp. 1236-1241

    Google Scholar 

  24. J. Hu, R.G. Gordon, Mater. Res. Soc. Symp. Proc. 202, 457 (1991)

    Google Scholar 

  25. K. Haga, P.S. Wijesena, H. Watanabe, Appl. Surf. Sci. 169/170, 504 (2001)

    Article  ADS  Google Scholar 

  26. J.A.A. Selvan, H. Keppner, U. Kroll, J. Cuperus, A. Shah, T. Adatte, N. Randall, Mater. Res. Soc. Symp. Proc. 472, 39 (1997)

    Google Scholar 

  27. J. Hu, R.G. Gordon, J. Appl. Phys. 71, 880 (1992)

    Article  ADS  Google Scholar 

  28. J. Hu, R.G. Gordon, Mater. Res. Soc. Symp. Proc. 242, 743 (1992)

    Google Scholar 

  29. J. Hu, R.G. Gordon, J. Electrochem. Soc. 139, 2014 (1992)

    Article  ADS  Google Scholar 

  30. A.L. Fahrenbruch, R.H. Bube, Fundamentals of Solar Cells (Academic Press, New York, 1983)

    Google Scholar 

  31. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    Article  ADS  Google Scholar 

  32. J. Hu, R.G. Gordon, Mater. Res. Soc. Symp. Proc. 283, 891 (1993)

    Google Scholar 

  33. J. Steinhauser, S.Y. Myong, S. Faÿ, R. Schlüchter, E. Vallat-Sauvain, A. Rüfenacht, A. Shah, C. Ballif, Mater. Res. Soc. Symp. Proc. 928, GG12.05 (2006)

    Google Scholar 

  34. S. Faÿ, L. Feitknecht, R. Schlüchter, U. Kroll, E. Vallat-Sauvain, A. Shah, Solar Energy Materials and Solar Cells 90, 2960 (2006)

    Article  Google Scholar 

  35. S. Faÿ, J. Steinhauser, R. Schlüchter, L. Feitknecht, C. Ballif, A. Shah, in Proc. of the 15th International Photovoltaic Science and Engineering Conference (Shanghai, China, 2005), pp. 559-560

    Google Scholar 

  36. K. Tabuchi, W.W. Wenas, M. Yoshino, A. Yamada, M. Konagai, K. Takahashi, in Proc. of the 11th European Photovoltaic Solar Energy Conference (Montreux, Switzerland, 1992), pp. 529-532

    Google Scholar 

  37. K. Ellmer, J. Phys. D: Appl. Phys. 34, 3097 (2001)

    Article  ADS  Google Scholar 

  38. T. Minami, MRS Bulletin 25(Aug), 38 (2000)

    Google Scholar 

  39. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  ADS  Google Scholar 

  40. T.S. Moss, Proc. Phys. Soc. London B 76, 775 (1954)

    Article  ADS  Google Scholar 

  41. A.P. Roth, J.B. Webb, D.F. Williams, Solid State Commun. 39, 1269 (1981)

    Article  ADS  Google Scholar 

  42. A.P. Roth, J.B. Webb, D.F. Williams, Phys. Rev. B 25, 7836 (1982)

    Article  ADS  Google Scholar 

  43. N. Mott, Metal Insulator Transitions (Barns and Noble Books, New York, 1974)

    Google Scholar 

  44. S.C. Jain, J.M. McGregor, D.J. Roulston, J. Appl. Phys. 68, 3747 (1990)

    Article  ADS  Google Scholar 

  45. B.E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, C.G. Granqvist, Phys. Rev. B 37, 10244 (1988)

    Article  ADS  Google Scholar 

  46. M. Shimizu, H. Kamei, M. Tanizawa, T. Shiosaki, A. Kawabata, J. Cryst. Growth 89, 365 (1988)

    Article  ADS  Google Scholar 

  47. M. Shimizu, T. Katayama, Y. Tanaka, T. Shiosaki, A. Kawabata, J. Cryst. Growth 101, 171 (1990)

    Article  ADS  Google Scholar 

  48. A. Yamada, W.W. Wenas, M. Yoshino, M. Konagai, K. Takahashi, Jpn. J. Appl. Phys. 30, L1152 (1991)

    Article  ADS  Google Scholar 

  49. Y.J. Kim, H.J. Kim, Mater. Lett. 21, 351 (1994)

    Article  Google Scholar 

  50. T. Shiosaki, T. Yamamoto, M. Yagi, A. Kawabata, Appl. Phys. Lett. 39, 399 (1981)

    Article  ADS  Google Scholar 

  51. R. Groenen, J. Löffler, P.M. Sommeling, J.L. Linden, E.A.G. Hamers, R.E.I. chropp, M.C.M. van de Sanden, Thin Solid Films 392, 226 (2001)

    Article  ADS  Google Scholar 

  52. J. Löffler, R.E.I. Schropp, R. Groenen, M.C.M. van de Sanden, in Proc. of the 28th IEEE Photovoltaic Specialists Conference (Anchorage, USA, 2000), pp. 892-895

    Google Scholar 

  53. J. Löffler, Transparent Conductive Oxides for Thin-Film Silicon Solar Cells. Ph.D. thesis, University of Utrecht (2005)

    Google Scholar 

  54. D. Pier, K. Mitchell, in Proc. of the 9th European PV Solar Energy Conference (Freiburg, Germany, 1989), pp. 488-489

    Google Scholar 

  55. B. Sang, Y. Nagoya, K. Kushiya, O. Yamase, Sol. Energy Mater. & Solar Cells 75,179 (2003)

    Article  Google Scholar 

  56. J. Steinhauser, L. Feitknecht, S. Faÿ, R. Schlüchter, J. Springer, A. Shah, C. Ballif, in Proc. of the 20th European Photovoltaic Solar Energy Conference (Barcelona, Spain, 2005), p. 1608

    Google Scholar 

  57. L.C. Olsen, H. Aguilar, F.W. Addis, W. Lei, J. Li, in Proc. of the 25th IEEE Photovoltaic Specialists Conference (Wahington D.C., USA, 1996), pp. 997-1000

    Google Scholar 

  58. J. Meier, S. Dubail, D. Fischer, J.A.A. Selvan, N. Pellaton-Vaucher, R. Platz, C. Hof, R. Flückiger, U. Kroll, N. Wyrsch, P. Torres, H. Keppner, A. Shah, K.D. Ufert, in Proc. of the 13th European Photovoltaic Solar Energy Conference (Nice, France, 1995), pp. 1445-1450

    Google Scholar 

  59. R.G. Gordon, in NREL/SNL Photovoltaics Program Review, ed. by C.E. Witt, M. Al-Jassim, J.M. Gee (AIP Press, New York, 1997), pp. 39-48

    Google Scholar 

  60. L. Feitknecht, J. Steinhauser, R. Schlüchter, S. Faÿ, D. Dominé, E. Vallat-Sauvain, F. Meillaud, C. Ballif, A. Shah, in Proc. of the 15th International Photovoltaic Science and Engineering Conference (Shanghai, China, 2005), pp. 473-474

    Google Scholar 

  61. R.R. Arya, T. Lommasson, B. Fieselmann, L. Russell, L. Carr, A. Catalano, in Proc. of the 22nd IEEE Photovoltaic Specialists Conference (Las Vegas, USA, 1991), pp. 903-906

    Google Scholar 

  62. R.G. Dhere, K. Ramanathan, T.J. Coutts, B.M. Basol, V.K. Kapur, in Proc. of the 22nd IEEE Photovoltaic Specialists Conference (Las Vegas, USA, 1991), pp. 1077-1081

    Google Scholar 

  63. D. Pier. U.S. Patent 5,078,803 (1992)

    Google Scholar 

  64. P.S. Vijayakumar, K.A. Blaker, R.D. Wieting, B. Wong, A. Halani, C. Park. U.S. Patent 4,751,149 (1988)

    Google Scholar 

  65. R.D. Wieting, R.R. Potter. U.S. Patent 4,612,411 (1986)

    Google Scholar 

  66. R.D. Wieting, in Proc. of the 29th IEEE Photovoltaic Specialist Conference (New Orleans, USA, 2002), p. 478

    Google Scholar 

  67. L.C. Olsen, W. Lei, F.W. Addis, W.N. Shfarman, M.A. Contreras, K. Ramanathan, in Proc. of the 26th IEEE Photovoltaic Specialists Conference (Anaheim, USA, 1997), p. 363

    Google Scholar 

  68. E. Terzini, A. Antonaia, P. Thilakan, S. Aprea, I. Luck, in Proc. of the 16th European Photvoltaic Solar Energy Conference (Glasgow, UK, 2000), p. 706

    Google Scholar 

  69. S. Hegedus, W. Buchanan, X. Liu, R.G. Gordon, in Proc. of the 25th IEEE Photovoltaic Specialists Conference (Washington D.C., USA, 1996), pp. 1129-1132

    Google Scholar 

  70. W.W. Wenas, A. De, A. Yamada, M. Konagai, K. Takahashi, Sol. Energy Mater. & Solar Cells 34, 313 (1994)

    Article  Google Scholar 

  71. W.W. Wenas, K. Dairiki, A. Yamada, M. Konagai, K. Takahashi, J.H. Jang, K.S. Lim, in Proc. of the 1st World Conference on Photovoltaic Energy Conversion (Waikaloa, USA, 1994), pp. 413-416

    Book  Google Scholar 

  72. W.W. Wenas, M. Konagai, in Proc. of the 29th IEEE Photovoltaic Specialist Conference (New Orleans, USA, 2002), pp. 1130-1133

    Google Scholar 

  73. B. Sang, K. Dairiki, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 38, 4983 (1999)

    Article  ADS  Google Scholar 

  74. J. Meier, U. Kroll, S. Dubail, S. Golay, S. Faÿ, J. Dubail, A. Shah, in Proc. of the 28th IEEE Photovoltaic Specialists Conference (Anchorage, USA, 2000), pp. 746-749

    Google Scholar 

  75. J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, A. Shah, Sol. Energy Mater. & Solar Cells 74, 457 (2002)

    Article  Google Scholar 

  76. J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, A. Shah, in Proc. of the 3rd World Conference and Exhibition on Photovoltaic Solar Energy Conversion (Osaka, Japan, 2003), pp. 2801-2805

    Google Scholar 

  77. J. Bauer, H. Calwer, P. Marklstorfer, P. Milla, F.W. Schulze, K.D. Ufert, J. Non-Cryst. Solids 164-166, 685 (1993)

    Article  ADS  Google Scholar 

  78. U. Kroll, in Proc. of the 21st European Photovoltaic Solar Energy Conference (Dresden, Germany, 2006), pp. 1546-1551

    Google Scholar 

  79. J. Meier, U. Kroll, J. Spitznagel, S. Benagli, A. Hügli, T. Roschek, C. Ellert, M. Poppeller, G. Androutsopoulos, D. Borello, W. Stein, O. Kluth, M. Nagel, C. Bücher, L. Feitknecht, G. Büchel, J. Springer, A. Büchel, in Proc. of the 20th European Photovoltaic Solar Energy Conference and Exhibition (Barcelona, Spain, 2005), p. 1503

    Google Scholar 

  80. J. Bailat, E. Vallat-Sauvain, L. Feitknecht, C. Droz, A. Shah, J. Non-Cryst. Solids 299-302, 1219 (2002)

    Article  ADS  Google Scholar 

  81. E. Vallat-Sauvain, S. Faÿ, S. Dubail, J. Meier, J. Bailat, U. Kroll, A. Shah, Mater. Res. Soc. Symp. Proc. 664, A15.3.1 (2001)

    Google Scholar 

  82. Y. Nasuno, M. Kondo, A. Matsuda, Sol. Energy Mater. & Solar Cells 74, 497 (2002)

    Article  Google Scholar 

  83. J. Bailat, D. Dominé, R. Schlüchter, J. Steinhauser, S. Faÿ, F. Freitas, C. Bucher, L. Feitknecht, X. Niquille, R. Tscharner, A. Shah, C. Ballif, in Proc. of the 4th World Conference on Photovoltaic Energy Conversion (Waikaloa, USA, 2006), pp. 1533-1536

    Book  Google Scholar 

  84. B. Sang, K. Kushiya, D. Okumura, O. Yamase, Sol. Energy Mater. & Solar Cells 67, 237 (2001)

    Article  Google Scholar 

  85. R. Groenen, J.L. Linden, H.R.M. Van Lierop, D.C. Schram, A.D. Kuypers, M.C.M. Van de Sanden, Applied Surface Science 173, 40 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Faÿ, S., Shah, A. (2008). Zinc Oxide Grown by CVD Process as Transparent Contact for Thin Film Solar Cell Applications. In: Ellmer, K., Klein, A., Rech, B. (eds) Transparent Conductive Zinc Oxide. Springer Series in Materials Science, vol 104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73612-7_6

Download citation

Publish with us

Policies and ethics