Skip to main content

Part of the book series: Atomic, Optical, and Plasma Physics ((SSAOPP,volume 44))

  • 1413 Accesses

In PPS experiments, in contrast to conventional intensity spectroscopy, the light should be separated into two orthogonal linearly polarized components, and the intensities of each component should be determined with high accuracy. Since, in many cases, polarization degree is a couple of percent, uncertainty in the intensity determination should be low. Therefore, instrumentation is a very important element in PPS. In the visible-uv wavelength region, PPS observation can be practiced relatively easily, because various polarization selection optical components and detectors with high efficiency are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. . D. Coffin: Decoding raw digital photos in Linux http://www.cybercom.net/∼dcoffin/dcraw

  2. T. Fujimoto, H. Sahara, T. Kawachi, T. Kallstenius, M. Goto, H. Kawase, T. Furukubo, T. Maekawa, Y. Terumichi: Phys. Rev. E 54, R2240 (1996)

    Article  ADS  Google Scholar 

  3. T. Kallstenius: Thesis “Plasma Polarization Spectroscopy: Impurity Ion Emission Lines From the WT-3 Tokamak ”, (Royal Institute of Technology, Stockholm, Sweden, 1994)

    Google Scholar 

  4. A. Iwamae, T. Sato, Y. Horimoto, K. Inoue, T. Fujimoto, M. Uchida, T. Maekawa: Plasma Phys. Control. Fusion 47, L41 (2005)

    Article  ADS  Google Scholar 

  5. A. Iwamae, M. Hayakawa, M. Atake, T. Fujimoto, M. Goto, S. Morita: Phys. Plasmas 12, 042501 (2005)

    Google Scholar 

  6. D. Clark, B. G. Stewart, H. E. Schwarz, A. Brooks: Astron. Astrophys. 126, 260 (1983)

    ADS  Google Scholar 

  7. D. Clark, B. G. Stewart: Vistas in Astronomy 29, 27 (1986)

    Article  ADS  Google Scholar 

  8. . J. Janesick: Scientific Charge Coupled Devices, (SPIE Press Monograph Vol. PM83, 2001)

    Google Scholar 

  9. L. Mortara, A. Fowler: Solid State Imagers for Astronomy SPIE 290, 28 (1981)

    ADS  Google Scholar 

  10. J. R. Janesick, K. P. Klaasen, T. Elliot: Opt. Eng. 26, 972 (1987)

    Google Scholar 

  11. R. L. Bell: IEEE Transactions on Electron Devices, ED-22, 821 (1975)

    Article  Google Scholar 

  12. . S. E. Moran, B. L. Ulich, W. P. Elkins, R. L. Strittmatter, M. J. DeWeert: SPIE Proceedings 3173-43 (1997).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iwamae, A. (2008). Instrumentation I. In: Fujimoto, T., Iwamae, A. (eds) Plasma Polarization Spectroscopy. Atomic, Optical, and Plasma Physics, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73587-8_14

Download citation

Publish with us

Policies and ethics