Skip to main content

Role of LQ Decomposition in Subspace Identification Methods

  • Chapter
Modeling, Estimation and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 364))

Abstract

We revisit the deterministic subspace identification methods for discrete-time LTI systems, and show that each column vector of the L-matrix of the LQ decomposition in MOESP and N4SID methods is a pair of input-output vectors formed by linear combinations of given input-output data. Thus, under the assumption that the input is persistently exciting (PE) of sufficient order, we can easily compute zero-input and zero-state responses by appropriately dividing given input-output data into past and future in the LQ decomposition. This reveals the role of the LQ decomposition in subspace identification methods. Also, a related issue in stochastic realization is briefly discussed in Appendix.

The earlier version of this paper was presented at the International Symposium on Mathematical Theory of Networks and Systems, Kyoto, July 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Akaike (1975), “Markovian representation of stochastic processes by canonical variables,” SIAM J. Control, vol. 13, no. 1, pp. 162–173.

    Article  MATH  MathSciNet  Google Scholar 

  2. K. S. Arun and S. Y. Kung (1990), “Balanced approximation of stochastic systems,” SIAM Journal on Matrix Analysis and Applications, vol. 11, no. 1, pp. 42–68.

    Article  MATH  MathSciNet  Google Scholar 

  3. U. B. Desai, D. Pal and R. D. Kirkpatrick (1985), “A realization approach to stochastic model reduction,” Int. J. Control, vol. 42, no. 4, pp. 821–838.

    Article  MATH  Google Scholar 

  4. P. Faurre (1976), “Stochastic realization algorithms,” In System Identification: Advances and Case Studies (R. Mehra and D. Lainiotis, eds.), Academic, pp. 1–25.

    Google Scholar 

  5. R. E. Kalman, P. L. Falb and M. A. Arbib (1969), Topics in Mathematical System Theory, McGraw-Hill.

    Google Scholar 

  6. T. Katayama (2005), Subspace Methods for System Identification, Springer.

    Google Scholar 

  7. A. Lindquist and G. Picci (1996), “Canonical correlation analysis, approximate covariance extension, and identification of stationary time series,” Automatica, vol. 32, no. 5, pp. 709–733.

    Article  MATH  MathSciNet  Google Scholar 

  8. I. Markovsky, J. C. Willems, P. Rapisarda and B. L. M. De Moor (2005), “Algorithms for deterministic balanced subspace identification,” Automatica, vol. 41, no. 5, pp. 755–766.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Moonen, B. De Moor, L. Vandenberghe and J. Vandewalle (1989), “On-and off-line identification of linear state-space models,” Int. J. Control, vol. 49, no. 1, pp. 219–232.

    Article  MATH  Google Scholar 

  10. G. Picci and T. Katayama (1996), “Stochastic realization with exogenous inputs and’ subspace methods’ identification,” Signal Processing, vol. 52, no. 2, pp. 145–160.

    Article  MATH  Google Scholar 

  11. H. Tanaka and T. Katayama (2006), “A stochastic realization algorithm via block LQ decomposition in Hilbert space,” Automatica, vol. 42, no. 5, pp. 741–746.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Van Overschee and B. De Moor (1994), “N4SID-Subspace algorithms for the identification of combined deterministic-stochastic systems,” Automatica, vol. 30, no. 1, pp. 75–93.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Van Overschee and B. De Moor (1996), Subspace Identification for Linear Systems, Kluwer Academic.

    Google Scholar 

  14. M. Verhaegen and P. Dewilde (1992), “Subspace model identification, Part 1: The output-error state-space model identification class of algorithms & Part 2: Analysis of the elementary output-error state space model identification algorithm,” Int. J. Control, vol. 56, no. 5, pp. 1187–1210 & pp. 1211–1241.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Verhaegen (1994), “Identification of the deterministic part of MIMO state space models given in innovations form from input-output data,” Automatica, vol. 30, no. 1, pp. 61–74.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katayama, T. (2007). Role of LQ Decomposition in Subspace Identification Methods. In: Chiuso, A., Pinzoni, S., Ferrante, A. (eds) Modeling, Estimation and Control. Lecture Notes in Control and Information Sciences, vol 364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73570-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73570-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73569-4

  • Online ISBN: 978-3-540-73570-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics