Skip to main content

Contour Reconstruction and Matching Using Recursive Smoothing Splines

  • Chapter
Modeling, Estimation and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 364))

Abstract

In this paper a recursive smoothing spline approach is used for reconstructing a closed contour. Periodic splines are generated through minimizing a cost function subject to constraints imposed by a linear control system. The filtering effect of the smoothing splines allows for usage of noisy sensor data. An important feature of the method is that several data sets for the same closed contour can be processed recursively so that the accuracy can be improved meanwhile the current mapping can be used for planning the path for the data-collecting robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Piccolo, M. Karasalo, D. Kragic, X. Hu Contour Reconstruction using Recursive Smoothing Splines-Experimental Validation to appear in Proceedings of IROS 2007, 2007.

    Google Scholar 

  2. Arthur E. Bryson, Yu-Chi Ho Applied Optimal Control, Optimization estimation and control Halsted Press, 1975.

    Google Scholar 

  3. Andrew Jazwinski. Stochastic Processes and Filtering Theory Academic Press, 1970.

    Google Scholar 

  4. C.T Leondes Advances in Control Systems, vol 16 Academic Pr, 1965.

    Google Scholar 

  5. S. Bittanti, G. Fronza and G. Guardabssi, Periodic Control: A Frequency Domain Approach, IEEE Trans. Aut. Control, vol. 18, no. 1, 1973.

    Google Scholar 

  6. A.Z. Averbuch, A.B. Pevnyi, and V.A. Zheludev. Butterworth wavelet transforms derived from discrete interpolatory splines: recursive implementation. Signal Processing, 81:2363–2382, 2001.

    Article  MATH  Google Scholar 

  7. M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba. A solution to the simultaneous localization and map building (slam) problem. IEEE Transactions on Robotics and Automation, 17(3):229–241, 2001.

    Article  Google Scholar 

  8. Magnus Egerstedt and Clyde F. Martin. Statistical estimates for generalized splines. ESAIM:Control, Optimisation and Calculus of Variations, 9:553–562, 2003.

    MATH  MathSciNet  Google Scholar 

  9. R. Frezza and G. Picci. “On Line Path Following by Recursive Spline Updating”. In Proceedings of the 34th Conference of Decision and Control, pages 367–393, 1995.

    Google Scholar 

  10. R. Frezza, S. Soatto, and G. Picci. “Visual Path Planning by Recursive Spline Updating”. In Proceedings of the 36th Conference of Decision and Control, pages 367–393, 1997.

    Google Scholar 

  11. S. Isotani, A. de Albuquerque, M. Muratore, and N. Brasil Filho. A recursive spline-based algorithm for sensor calibration design. Industrial Electronics, Control and Instrumentation, 3:1952–1954, 1994.

    Google Scholar 

  12. H. Kano, H. Fujioka, M. Egerstedt, and C.F Martin. Optimal smoothing spline curves and contour synthesis. In Proceedings of the 16th IFAC World Congress, July 2005.

    Google Scholar 

  13. M. Karasalo, X. Hu, L. Johansson, and K. Johansson. “Multi-Robot Terrain Servoing with Proximity Sensors”. Proc. Int. Conf. Robotics and Aut., 2005, 367–393, 2005.

    Google Scholar 

  14. C. F. Martin and J. Smith. Approximation, interpolation and sampling. differential geometry, the interface between pure and applied mathematics. Contemp. Math., 68:227–252, 1987.

    MathSciNet  Google Scholar 

  15. C. F. Martin S. Sun, M. Egerstedt. Control theoretic smoothing splines. IEEE Transactions on Automatic Control, 45:2271–2279, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Zhou, W. Dayawansa, and C.F. Martin. Control theoretic smoothing splines are approximate linear filters. Communications in Information and Systems, 4:253–272, 2004.

    MATH  MathSciNet  Google Scholar 

  17. H. Perez and S. Devasia. Optimal output-transitions for linear systems. Automatica, 39(2), 181–192, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Ferrante, G. Marro and L. Ntogramatzidis. A parameterization of the solutions of the finite-horizon LQ problem with general cost and boundary condition. Automatica, 41(8), 1359–1366, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Egerstedt C. F. Martin, S. Sun. Optimal control, statistics and path planning. Math. Comput. Modelling, 33:237–253, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Karasalo, X. Hu, and C.F. Martin. Localization and Mapping using Recursive Smoothing Splines To appear in Proc of ECC 2007, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karasalo, M., Hu, X., Martin, C.F. (2007). Contour Reconstruction and Matching Using Recursive Smoothing Splines. In: Chiuso, A., Pinzoni, S., Ferrante, A. (eds) Modeling, Estimation and Control. Lecture Notes in Control and Information Sciences, vol 364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73570-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73570-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73569-4

  • Online ISBN: 978-3-540-73570-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics