Advertisement

Key Establishment Scheme for Sensor Networks with Low Communication Cost

  • Yong Ho Kim
  • Hwaseong Lee
  • Jong Hyuk Park
  • Laurence T. Yang
  • Dong Hoon Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4610)

Abstract

Recently, Huang et al. proposed an efficient authenticated key establishment scheme for self-organizing sensor networks. However, in their scheme, a sensor node and a security manager should exchange public-key certificates to authenticate each other. In this paper, we propose an efficient authenticated key establishment scheme which can reduce the communication cost of transmitting public-key certificates.

Keywords

Sensor Network Sensor Node Wireless Sensor Network Medium Access Control Security Manager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barr, K., Asanovic, K.: Energy aware lossless data compression. In: 1st Int. Conf.Mobile Syst. Applicat. Services, pp. 231–244 (2003)Google Scholar
  2. 2.
    Chan, H., Perrig, A., Song, D.: Random key predistribution schemes for sensor networks. In: IEEE Symposium on Security and Privacy, pp. 197–213 (2003)Google Scholar
  3. 3.
    Choi, K.Y., Hwang, J.Y., Lee, D.H.: ID-based Authenticated Key Agreement for Low-Power Mobile Devices. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 494–505. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Du, W., Deng, J., Han, Y. S., Chen, S., Varshney, P.K.: A Key Management Scheme for Wireless Sensor Networks Using Deployment Knowledge. In: IEEE INFOCOM 2004, pp. 586–597 (2004)Google Scholar
  5. 5.
    Du, W., Deng, J., Han, Y. S., Varshney, P.K., Katz, J., Khalili, A.: A Pairwise Key Pre-distribution Scheme for Wireless Sensor Networks. ACM Transactions on Information and System Security, 228–258 (2005)Google Scholar
  6. 6.
    Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor networks. In: ACM CCS 2002, pp. 41–47 (2002)Google Scholar
  7. 7.
    Gaubatz, G., Kaps, J., Sunar, B.: Public keys cryptography in sensor networks? revisited. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004. LNCS, vol. 3313, pp. 2–18. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve cryptography and RSA on 8-bit CPUS. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 119–132. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Huang, Q., Cukier, J., Kobayashi, H., Liu, B., Zhang, J.: Fast authenticated key establishment protocols for self-organizing sensor networks. In: ACM WSNA 2003, pp. 141–150 (2003)Google Scholar
  10. 10.
    IEEE Std. 802.15.4-2003, IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANS) (2003)Google Scholar
  11. 11.
    Liu, D., Ning, P., Li, R.: Establishing Pairwise Keys in Distributed Sensor Networks. ACM Transactions on Information and System Security, 41–77 (2005)Google Scholar
  12. 12.
    Menezes, A.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Boston (1993)zbMATHGoogle Scholar
  13. 13.
    Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. E85-A(2), 481–484 (2002)Google Scholar
  14. 14.
    Malan, D.J., Welsh, M., Smith, M.D.: A public-key infrastructure for key distribution in tinyos based on elliptic curve cryptography. In: IEEE SECON 2004, pp. 71–80 (2004)Google Scholar
  15. 15.
    Perrig, A., Szewczyk, R., Wen, V., Cullar, D., Tygar, J.D.: SPINS: Security protocols for sensor networks. In: ACM/IEEE Internation Conference on Mobile Computing and Networking, pp. 189–199 (2001)Google Scholar
  16. 16.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. of Cryptology 13, 361–396 (2000)zbMATHCrossRefGoogle Scholar
  17. 17.
    Wander, A., Gura, N., Eberle, H., Gupta, V., Chang, S.: Energy analysis for public-key cryptography for wireless sensor networks. In: IEEE PERCOM 2005 (2005)Google Scholar
  18. 18.
    Watro, R., Kong, D., Cuti, S., Gardiner, C., Lynn, C., Kruus, P.: Tinypk: Securing sensor networks with public key technology. In: ACM SASN 2004, pp. 59–64 (2004)Google Scholar
  19. 19.
    Zhang, Y., Liu, W., Lou, W., Fang, Y.: Securing sensor networks with location-based keys. In: IEEE WCNC 2005, pp. 1909–1914 (2005)Google Scholar
  20. 20.
    Zhang, Y., Liu, W., Lou, W., Fang, Y.: Location-based compromise-tolerant security mechanisms for wireless sensor networks. IEEE JSAC, Special Issue on Security in Wireless Ad Hoc Networks 24(2), 47–260 (2006)Google Scholar
  21. 21.
    Zhang, Y., Liu, W., Lou, W., Fang, Y., Wu, D.: Secure localization and authentication in ultra-wideband sensor networks. IEEE JSAC, Special Issue on UWB Wireless Communications - Theory and Applications 24(4), 829–835 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Yong Ho Kim
    • 1
  • Hwaseong Lee
    • 1
  • Jong Hyuk Park
    • 2
  • Laurence T. Yang
    • 3
  • Dong Hoon Lee
    • 1
  1. 1.Center for Information Security Technologies (CIST), Korea University, SeoulKorea
  2. 2.Hanwha S&C Co., Ltd.Korea
  3. 3.St Francis Xavier UniversityCanada

Personalised recommendations